首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High spectral resolution  ( R ∼ 40 000)  and signal-to-noise optical spectra, obtained at the Very Large Telescope (VLT), are presented for three post–asymptotic giant branch (AGB) candidates selected from the Edinburgh–Cape (EC) Faint Blue Object Survey. The stellar atmospheric parameters and chemical compositions, derived using sophisticated non-local thermodynamic equilibrium calculations, reveal that EC 14102-1337 and EC 20068-7324 are both in an evolved post–horizontal branch (HB) evolutionary state. However, EC 11507-2253 is most likely a post-AGB star.  相似文献   

2.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   

3.
Very-high-resolution ( R ∼160 000) spectroscopic observations are presented for the early B-type star, HD 83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines H α and H δ and the lines of Si  ii and Si  iii for atmospheric parameters of T eff≃21 700±600 K and log  g ≃4.00±0.15 dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ≃5 and ≃2 km s−1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1–0.2 dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung–Russell diagram and normal metal abundance lead us to conclude that HD 83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.  相似文献   

4.
We have analysed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (≲2.0 M) unevolved star and that the eccentricity of the orbit is 0.94±0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average , we find that a kick of ∼740 km s−1 is needed to account for the recently measured radial velocity of +430 km s−1 (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is ∼500 km s−1. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of ∼60 000 yr. Furthermore, we predict that the companion star has lost ∼10 per cent of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.  相似文献   

5.
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff=33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1=78±3 km s−1 and a system velocity γ=6±2 km s−1. Spectrograms from the IUE Final Archive give T eff=33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1=0.19 and r 2=0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves.  相似文献   

6.
We report the discovery of large-amplitude (∼0.25 mag) pulsations in the bright ( V =12.8) sdB star, PG 1605+072. The dominant period is 480 s, but more than 20 periods were present on at least three separate occasions. Frequency analysis of the complete data set yields more than 30 periods. A few of these are harmonics or linear combinations of the strongest modes. Excluding the latter, the periods span a range of almost 400 s, which contrasts with the typical range <20 s for most other EC 14026 stars.
Analysis of multicolour photometry limited any cool companion to being a main-sequence star of type M0 or later. Balmer line profile fitting yielded an effective temperature of 32 100±1000 K and a log g of 5.25±0.10, significantly smaller than in the other stars of the EC 14026 class, and possibly indicative of a more evolved state. The lower gravity is probably responsible for the fact that the pulsation periods and amplitudes are respectively much longer and larger than in other stars of the class. This star is an obvious target for asteroseismological investigation using a multilongitude photometric campaign.  相似文献   

7.
In this study we present and re-analyse the historical, 1889–1998, light curve (LC) of the eclipsing symbiotic binary AR Pav. For the first time, we show that the timing of mid-points of eclipses observed during a quiescent phase obeys a quadratic ephemeris, with an initial orbital period P 0=605.18 d and a rate of period change     .
We determined a distance to the system of 5.8±1.5 kpc, the mass ratio of the giant to the hot star, M g M h=0.4±0.1, the mass of the giant, M g=1.8+1/−0.5 M and its radius, R g=167±15 R.
During quiescence, the LC has characteristic features similar to those observed in cataclysmic variables (CVs). It can be well reproduced by a model of a large accretion disc surrounding the hot star. However, it is probable that the geometry of the transferred material in the Roche lobe of the accretor in AR Pav is different from that of CVs.
During active phases the shape of the LC changes considerably. A complex wave-like variation developed as a function of the orbital phase with an amplitude of ∼1 mag. It is interpreted in terms of a collisionally heated emission region located on the giant surface and arising from the hot star eruption.  相似文献   

8.
We present   UBV  I c   CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ∼10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between   E ( B − V ) ≃ 1.4  to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as  3.7 ± 0.3  . The distance of the cluster is found to be  1.00 ± 0.05 kpc  . Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ∼2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ∼2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, Γ, in the mass range  2.5 < M /M≤ 28  is found to be  −1.01 ± 0.11  which is shallower than the Salpeter value (−1.35), whereas in the mass range  1.5 < M /M≤ 2.5  the slope is almost flat. The slope of the K -band luminosity function is estimated as  0.27 ± 0.02  , which is smaller than the average value (∼0.4) reported for young embedded clusters. Approximately 32 per cent of Hα emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.  相似文献   

9.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula  (12 + log O/H = 8.61 ± 0.13 dex)  is similar to that in the background nebula (8.56 ± 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 ± 0.15, compared to the background value of 7.47 ± 0.18. A new analysis of the stellar spectrum with the fastwind model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around  50 M  , which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.  相似文献   

10.
We present BVR polarimetric study of the cool active star LO Pegasi (LO Peg) for the first time. LO Peg was found to be highly polarized among the cool active stars. Our observations yield average values of polarization in LO Peg:   PB = 0.387 ± 0.004 per cent, θB= 88°± 1°; PV = 0.351 ± 0.004 per cent, θV= 91°± 1°  and   PR = 0.335 ± 0.003 per cent, θR= 91°± 1°  . Both the degree of polarization and the position angle are found to be variable. The semi-amplitude of the polarization variability in B, V and R bands is found to be  0.18 ± 0.02, 0.13 ± 0.01  and  0.10 ± 0.02  per cent, respectively. We suggest that the levels of polarization observed in LO Peg could be the result of scattering of an anisotropic stellar radiation field by an optically thin circumstellar envelope or scattering of the stellar radiation by prominence-like structures.  相似文献   

11.
We present HST /WFPC2 observations of UGC 4483, an irregular galaxy in the M81/NGC 2403 complex. Stellar photometry was carried out with HSTphot, and is complete to V ≃26.0 and I ≃24.7. We measure the red giant branch tip at I =23.56±0.10, and calculate a distance modulus of μ 0=27.53±0.12 (corresponding to a distance of 3.2±0.2 Mpc), placing UGC 4483 within the NGC 2403 subgroup. We were able to measure properties of a previously known young star cluster in UGC 4483, finding integrated magnitudes of V =18.66±0.21 and I =18.54±0.10 for the stellar contribution (integrated light minus H α and [O  iii ] contribution), corresponding to an age of ∼10–15 Myr and an initial mass of ∼104 M. This is consistent with the properties of the cluster's brightest stars, which were resolved in the data for the first time. Finally, a numerical analysis of the galaxy's stellar content yields a roughly constant star formation rate of 1.3×10−3 M yr−1 and mean metallicity of [Fe/H]=−1.3 dex from 15 Gyr ago to the present.  相似文献   

12.
We investigate the behaviour of asymptotic giant branch (AGB) stars between metallicities   Z = 10−4  and 10−8. We determine which stars undergo an episode of flash-driven mixing, where protons are ingested into the intershell convection zone, as they enter the thermally pulsing AGB phase and which undergo third dredge-up. We find that flash-driven mixing does not occur above a metallicity of   Z = 10−5  for any mass of star and that stars above  2 M  do not experience this phenomenon at any metallicity. We find carbon ingestion (CI), the mixing of carbon into the tail of hydrogen-burning region, occurs in the mass range  2 M  to around  4 M  . We suggest that CI may be a weak version of the flash-driven mechanism. We also investigate the effects of convective overshooting on the behaviour of these objects. Our models struggle to explain the frequency of Carbon-Enhanced Metal-Poor (CEMP) stars that have both significant carbon and nitrogen enhancement. Carbon can be enhanced through flash-driven mixing, CI or just third dredge-up. Nitrogen can be enhanced through hot bottom burning and the occurrence of hot dredge-up also converts carbon into nitrogen. The C/N ratio may be a good indicator of the mass of the primary AGB stars.  相似文献   

13.
The Sculptor dwarf spheroidal galaxy has a giant branch with a significant spread in colour, symptomatic of an intrinsic age–metallicity spread. We present here a detailed study of the Sculptor giant branch and horizontal branch (HB) morphology, combining new near-infrared photometry from the Cambridge Infrared Survey Instrument (CIRSI), with optical data from the European Southern Observatory Wide Field Imager. For a Sculptor-like old and generally metal-poor system, the position of red giant branch (RGB) and asymptotic giant branch (AGB) stars on the colour–magnitude diagram (CMD) is mainly metallicity dependent. The advantage of using optical–near-infrared colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the HB morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical–near-infrared colours and the HB can help break the age–metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the near-infrared and the optical luminosity functions, and derive from them a mean metallicity of  [M/H]=−1.3 ± 0.1  . From isochrone fitting we derive a mean metallicity of  [Fe/H]=−1.42  with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the 'second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr.  相似文献   

14.
JHK s near-infrared photometry of stars in the Phoenix dwarf galaxy is presented and discussed. Combining these data with the optical photometry of Massey et al. allows a rather clean separation of field stars from Phoenix members. The discovery of a Mira variable ( P = 425 d), which is almost certainly a carbon star, leads to an estimate of the distance modulus of 23.10 ± 0.18 that is consistent with other estimates and indicates the existence of a significant population of age ∼2 Gyr. The two carbon stars of Da Costa have   M bol=−3.8  and are consistent with belonging to a population of similar age; some other possible members of such a population are identified. A Da Costa non-carbon star is  Δ K s∼ 0.3  mag brighter than these two carbon stars. It may be an asymptotic giant branch star of the dominant old population. The nature of other stars lying close to it in the   K s, ( J − K s)  diagram needs studying.  相似文献   

15.
We present a ∼5-yr optical light curve of the recurrent Be/X-ray transient A0538–66 obtained as a by-product of the MACHO Project. These data reveal both a long-term modulation at P =420.8±0.8 d and a short-term modulation at 16.6510±0.0022 d which, within errors, confirms the previously found orbital period. Furthermore, the orbital activity is only seen at certain phases of the 421-d cycle, suggesting that the long-term modulation is related to variations in the Be star envelope.  相似文献   

16.
We analyse high time resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile.
We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed ' S -wave' in the binary's spectrogram. We measure a spectroscopic period   P V803 Cen= 1596.4 ± 1.2 s  of the S -wave feature, which is significantly shorter than the 1611-s periods found in previous photometric studies. We conclude that the latter period likely represents a 'superhump'. If one assumes that our S -wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at   q ∼ 0.07  rather than   q ∼ 0.016  . This relaxes the constraints on the masses of the components considerably: the donor star then does not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit.
For HP Lib, we similarly measure a spectroscopic period   P HP Lib= 1102.8 ± 0.2 s  . This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.  相似文献   

17.
The evolved star HD 179821 continues to be the subject of much debate as to whether it is a nearby     post-asymptotic giant branch (post-AGB) star or a distant     high initial mass     post-red supergiant. We have mapped the OH maser emission around HD 179821 in the 1612- and 1667-MHz lines with the MERLIN interferometer array at a resolution of 0.4 arcsec and 0.35 km s−1. The OH emission lies in a thick shell with inner and outer radii of 1.3 and         and expansion velocity of 30 km s−1. Although we find some evidence for acceleration and for deviations from spherical symmetry, the bulk of the maser emission is consistent with a constant-velocity spherical shell. The extent of the shell agrees with H2O and OH dissociation models and supports a distance estimate of 6 kpc. However, the shell is incomplete and appears to have been disrupted by more recent collimated outflow activity within the last 1500 yr. We suggest that this activity is also responsible for the active envelope chemistry (in particular the presence of HCO+) and for the apparent offset of the star from the centre of the shell. The luminous yellow hypergiant star IRC +10420 also shows signs of recent outflows, and HD 179821 may be at a similar, perhaps slightly earlier, phase of evolution. We suggest that the SiO thermal emission arises from the same detached envelope as the OH maser emission as in IRC +10420. If so then this would strengthen the connection between these two stars and probably rule out a post-AGB status for HD 179821.  相似文献   

18.
In an imaging polarimetry survey of candidate post-AGB stars, scattering envelopes are detected around 20 objects. These envelopes represent the final mass-loss phases at the end of the AGB. In all cases, evidence for axisymmetry in the dust density is seen, suggesting that the presence of an axisymmetric outflow may be a ubiquitous phenomenon of the AGB to post-AGB transition. We use the polarized flux images to classify the objects into detached shell, bipolar and unresolved targets. Modelling based on a simple axisymmetric shell geometry supports the contention that post-AGB objects fall into one of two classes that differ in the amount of dust in the circumstellar environment: the detached shells correspond to stars with an optically thin expanding circumstellar envelope (CSE) whereas the bipolar and unresolved targets have optically thick dust structures, probably in the form of discs, which remain bound to the star, rather than partaking in the expansion of the AGB CSE. It is suggested that this bifurcation in morphology is rooted in the presence or absence of a binary companion, which determines whether or not a disc forms. Because the detached shell objects also appear axisymmetric, an additional mechanism for generating the axisymmetry, such as a magnetically shaped outflow, is needed if they do indeed have single star progenitors.  相似文献   

19.
A spectroscopic analysis of Sloan Digital Sky Survey (SDSS) J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields   T eff= 70 000 ± 5000 K  and  log  g = 5.25 ± 0.30  , together with a most likely type of K3 V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. Therefore, it seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having  log  g > 5.3  to be more likely to be unstable and capable of driving pulsation in the observed frequency range.  相似文献   

20.
I examine the implications of the recently found extrasolar planets on the planet-induced axisymmetric mass-loss model for the formation of elliptical planetary nebulae (PNe). This model attributes the low departure from spherical mass-loss of upper asymptotic giant branch (AGB) stars to envelope rotation which results from deposition of orbital angular momentum of the planets. Since about half of all PNe are elliptical, i.e., have low equatorial to polar density contrast, it was predicted that about 50 per cent of all Sun-like stars have Jupiter-like planets around them, i.e., a mass about equal to that of Jupiter, M J, or more massive. In the light of the new findings that only 5 per cent of Sun-like stars have such planets, and a newly proposed mechanism for axisymmetric mass-loss, the cool magnetic spots model, I revise this prediction. I predict that indeed ∼50 per cent of PN progenitors do have close planets around them, but the planets can have much lower masses, as low as ∼0.01 M J, in order to spin-up the envelopes of AGB stars efficiently. To support this claim, I follow the angular momentum evolution of single stars with main-sequence mass in the range of 1.3–2.4 M , as they evolve to the post-AGB phase. I find that single stars rotate much too slowly to possess any significant non-spherical mass-loss as they reach the upper AGB. It seems, therefore, that planets, in some cases even Earth-like planets, are sufficient to spin-up the envelope of these AGB stars for them to form elliptical PNe. The prediction that on average several such planets orbit each star, as in the Solar system, still holds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号