首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here a revised reconstruction of the Ross ice drainage system of Antarctica at the last glacial maximum (LGM) based on a recent convergence of terrestrial and marine data. The Ross drainage system includes all ice flowlines that enter the marine Ross Embayment. Today, it encompasses one-fourth of the ice-sheet surface, extending far inland into both East and West Antarctica. Grounding lines now situated in the inner Ross Embayment advanced seaward at the LGM (radiocarbon chronology in Denton and Marchant 2000 and in Hall and Denton 2000a, b), resulting in a thick grounded ice sheet across the Ross continental shelf. In response to this grounding in the Ross (and Weddell) Embayment, ice-surface elevations of the marine-based West Antarctic Ice Sheet were somewhat higher at the LGM than at present (Steig and White 1997; Borns et al. 1998; Ackert et al. 1999). At the same time, surface elevations of the East Antarctic Ice Sheet inland of the Transantarctic Mountains were slightly lower than now, except near outlet glaciers that were dammed by grounded ice in the Ross Embayment. The probable reason for this contrasting behavior is that lowered global sea level at the LGM, from growth of Northern Hemisphere ice sheets, caused widespread grounding of the marine portion of the Antarctic Ice Sheet, whereas decreased LGM accumulation led to slight surface lowering of the interior terrestrial ice sheet in East Antarctica. Rising sea level after the LGM tripped grounding-line recession in the Ross Embayment, which has probably continued to the present day (Conway et al. 1999). Hence, gravitational collapse of the grounded ice sheet from the Ross Embayment, accompanied by lowering of the interior West Antarctic ice surface and of outlet glaciers in the Transantarctic Mountains, occurred largely during the Holocene. At the same time, increased Holocene accumulation caused a slight rise of the inland East Antarctic ice surface.  相似文献   

2.
Late Quaternary Lakes in the McMurdo Sound Region of Antarctica   总被引:2,自引:0,他引:2  
Lake levels within the enclosed drainage basins of the Dry Valleys adjacent to McMurdo Sound have fluctuated widely during the Late Quaternary due to (a) local climate change and the consequent variation in the evaporation–precipitation regime, and (b) glacial fluctuations, resulting in changes in the catchment and meltwater drainage areas of the glaciers and, in some cases, in the volumes of the available lake basins. Three types of lakes can be distinguished on the basis of their water source: (1) lakes receiving the bulk of their water from melting of local alpine glaciers; (2) proglacial lakes associated with outlet glaciers from the East Antarctic Ice Sheet; (3) proglacial lakes associated with the marine oxygen-isotope stage 2 Ross Sea ice sheet and its precursors. The Dry Valleys contain an exceptionally long lacustrine record, extending back at least 300,000 years. Lacustrinesedimentation is cyclical, occurring over periods of about 100,000 years. During the last such cycle, relatively small lakes, both adjacent to East Antarctic outlet glaciers and fed by meltwater from alpine glaciers, existed during stage 5. However, these local lakes gave way to large proglacial lakes adjacent to the Ross Sea ice sheet in stage 2. The same relationship apparently occurred during the previous 100,000-year cycle. Dating of lacustrine sediments suggests that lakes proglacial to the Ross Sea ice sheet have existed during episodes of sea-level lowering during global glaciations. Lakes proglacial to outlet glaciers from the East Antarctic Ice Sheet have formed coincident with episodes of high eustatic sea level during interglacial periods.  相似文献   

3.
南极冰盖的物质平衡研究:进展与展望   总被引:2,自引:0,他引:2       下载免费PDF全文
南极冰盖物质平衡最新的研究进展表明,西南极洲表现出两种变化模式,西部在增厚,而北面在更快地减薄。西南极冰盖总体可能正在减薄,其物质损失的速率可能足以使海平面每年上升近0.2mm。东南极冰盖物质不平衡可能很小,甚至其符号还不能被确定。南极半岛正在经历着快速变化。目前还不能可靠地估算南极冰盖的物质平衡状态。同时,大型冰川的停滞,一些冰川流速加快,冰盖大范围加速减薄,冰架大面积的快速崩解和支流冰川的加速,以及着地线强烈的底部融化等显示出南极冰盖存在快速变化。南极冰盖物质平衡未来的重点研究领域是开展冰盖表面高程变化的监测与模拟,确定表面物质平衡及其在各冰流盆地的分布,着地线的冰流通量,冰架底部的融化,了解冰后期冰盖退缩的动力过程,以及开发、对比和改进与冰盖物质平衡模拟和预测相关的各种模型。  相似文献   

4.
The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 8-4 Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation.  相似文献   

5.
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.  相似文献   

6.
南极冰盖与冰川的快速变化   总被引:1,自引:0,他引:1       下载免费PDF全文
近10年的观测研究表明,南极冰盖和冰川存在快速的变化阿蒙森海扇区的主要冰流系统正在迅速变薄,减薄趋势可上溯至内陆150km处;罗斯冰流出现了停滞或明显减速,有的流动方向发生了改变,引发冰流袭夺;南极半岛冰架大面积崩塌,补给冰川加速,冰川出现了跃动;变暖的海水进一步侵蚀了冰架,着地线附近底部冰层融化强烈。上述发现改变了南极冰盖缓慢变化的传统观点,并对今后的冰川动力学研究,冰流模型模拟,冰盖物质平衡研究及预测具有重要意义。  相似文献   

7.
东南极大陆沿岸的维斯特福尔德丘陵(68°22'~68°40'S,77°55'~78°30'E)和西南极乔治王岛南端的菲尔德斯半岛(62°08'~62°20'S,58°45'~58°58'W)的气候条件不同。前者属于极地大陆性气候,气温低,冬季严寒,干燥、风大,夏季较短;后者属于极地海洋性气候,气温不很低,湿润、风小,夏季较长。因此,两地的冰缘地貌的组合类型及其发育过程存在明显的差异。前者冰缘地貌单一,发展速度较慢;后者冰缘地貌复杂多样,发展速度较快。 本文根据实地观测资料,对极地大陆型和极地海洋型两类冰缘地貌作一些比较,并且提出,年冻融日数是决定冰缘作用强弱的最重要指标。  相似文献   

8.
Relative sea level curves from glaciated North America reveal coherent spatial patterns of response times. In the Laurentide Ice Sheet area, curve half-lives range from 1.2–1.4 ka at the uplift centre to 1.7–2 ka in a ridge of high values inboard of the glacial limit. Half-lives decline from this ridge to less than 1 ka along the margin. In the Innuitian Ice Sheet area, half-lives are about 2 ka at the uplift centre and decline to less than 1 ka at the margin. The central Laurentide response times are about half those of central Fennoscandia. This accords with the theoretical expectation that central response times are inversely proportional to ice sheet radius for ice loads large enough that rebound at the centre is insensitive to lithospheric thickness. The Innuitian central response time indicates that rebound at the centre of this ice sheet, which is much smaller than the Fennoscandian Ice Sheet, remains sensitive to lithospheric thickness. Radial gradients in response times reflect the increasing influence of the lithosphere at sites increasingly closer to the margin. Along this gradient, rebound progresses as though at the centres of smaller and smaller ice sheets. That is, the effective spatial scale of the ice load decreases toward the margin. Near the glacial limit, postglacial isostatic adjustment is complicated by forebulge migration and collapse. This is seen most strongly in the relative sea level record of Atlantic Canada, which has subsided during the Holocene more than 20 m more than the adjacent American seaboard. The relative sea level history of some areas, notably the St. Lawrence Estuary, is complicated by tectonic processes.  相似文献   

9.
南极冰盖自形成以来就一直是全球环境体系最重要的组成部分 ,其扩展和消融的动态演化过程不仅是南极大陆最重要的地质过程 ,而且也是全球气候和环境变化最直接的反映和体现。因此 ,有关这一课题的研究一直是国际地质学界所关注的热点。本文回顾了南极冰川和气候演化研究的历史 ,总结了当前这方面研究的成果以及所存在的问题 ,探讨了其未来的发展趋势 ,在此基础上 ,对我国南极考察队发现格罗夫山 (GroveMountains)地区新生代沉积岩的意义进行了阐述  相似文献   

10.
由极地冰芯记录、中纬黄土记录和深海沉积记录的对比可得,15万年以来全球变化的基本框架为:末次间冰期,从距今14万年开始到约12.5万年达鼎盛,可分为五个阶段,即冰芯中三次高温期夹两次低温期;黄土中三层古土壤夹两层黄土;深海沉积中三次高海面夹两次低海面。末次冰期,距今8万年到1万年,可分为三个阶段,早、晚冰段和中间的间冰段。早、晚冰段盛期气候寒冷程度相当,但晚冰段最低温持续期更长,造成海面比早期更低。中间的间冰段,至少可分为7个亚段,即4次暖期(4次弱成土古土壤)夹3次冷期。全新世与末次间冰期对比,总体气候变化较平缓。在上述基本框架中,近几年发现,在末次冰期存在许多短周期、高频快速变化事件。这些事件,温度变化幅度达7℃,变化速率为几年到几十年,对应的环境变化速率可能更快。这些事件的引发机理目前还不清楚,有待进一步研究。  相似文献   

11.
海冰通过其对地面反照率的作用以及对大气和海洋之间热交换的局地障碍和对世界海洋环流的作用在全球热平衡和气候变化中起着重要的作用。南极海冰又因其极为显著的时空变化引起越来越多的关注。海冰的观测是海冰研究的重要内容 ,本文综述了南极海冰观测的发展过程 ,着重介绍了卫星在探测南极海冰方面的重要进展 .  相似文献   

12.
ABSTRACT. Hydrovolcanic deposits, interbedded tills and recycled microfossils, together with erosion anomalies in the Marie Byrd Land (MBL) landscape, each provide a portion of the record of glaciation and deglaciation events from late Oligocene to the present. We have attempted to synthesize these data sources to provide a more complete record, and to reconcile them with climatic events recorded elsewhere in Antarctica and the deep sea. The MBL data suggest that the late Oligocene was marked by the development of an ice cap at Mount Petras, where the MBL dome was beginning to rise from a near-sea-level position. Furthermore, unusually advanced cirque development in the dome crest area is difficult to explain unless there was a period of effective cirque erosion in that area between c. 25 and 15 Ma BP. These inferences are consistent with evidence from the Ross Sea for an expansion of the West Antarctic Ice Sheet (WAIS) in mid-Miocene (15–17 Ma BP) time.
The deep sea oxygen isotope proxy record has been interpreted to show the inception of West Antarctic glaciation around 6 Ma BP. This can perhaps be reconciled with the terrestrial record if one considers (1) the observation that large volume changes in the WAIS cannot produce a ω18O signal that is significantly outside limits of error, and (2) that the landscape in West Antarctica has evolved from very low regional relief in the Oligocene, to more than 2 km of local relief in the present day, as a result of dome uplift since c. 27 Ma BP, and the growth of large volcanoes since c. 19 Ma BP.  相似文献   

13.
Dome A冰川学研究进展及深冰芯计划展望   总被引:3,自引:0,他引:3       下载免费PDF全文
目前,位于东南极冰盖分冰岭中心的冰穹-Dome A已成为深入理解南极冰盖演化、稳定性和找寻地球气候久远记录的研究热点。通过整理总结在Dome A获得的冰川学研究进展,结合国际冰芯科学研究计划(International Partnerships in Ice Core Sciences,简称IPICS)有关寻找最古老冰芯的相关资料,对Dome A的气象要素、地貌、冰厚、冰下地形、冰体流速、冰盖内部结构等环境特征进行归纳分析,讨论Dome A冰川学的最新发展及其对深冰芯钻探计划的影响,并分析概述Dome A深冰芯钻探需考虑的问题和未来发展动向。  相似文献   

14.
Interpreting past glacial dynamics from the glacial record requires that the depositional environments of glacial sediments and landforms be understood. In the case of interlobate deposits, models that incorporate various components of pro, supra and subglacial deposition have been developed and tested in the northern Kettle Moraine (nKM), Wisconsin; a large interlobate deposit that formed between the Green Bay and Lake Michigan lobes of the Laurentide Ice Sheet during the last deglaciation. In this paper, we interpret a new genesis for the nKM using sediment analysis and distribution along with landform distribution. In Sheboygan County, the nKM consists of two steep-sided, high-relief, hummocky ridges separated by a low elevation and low-relief central axis. Gravel in the bounding hummocky ridges is well-sorted and well-rounded. Some bedding is collapsed. Large, isolated moulin kames are restricted to the axis area and composed of relatively poorly sorted, more angular gravel and diamicton. The distribution of these different sediments and landforms are explained by the accumulation of supraglacial debris that insulated the ice below the axis of the nKM, while the melting of cleaner ice on either side formed channels on the ice surface. As deglaciation proceeded, a substantial thickness of well-rounded, stream-deposited sand and gravel accumulated on ice in the bounding channels. Eventual collapse of this sediment formed the two hummocky ridges. Poorly sorted debris along the axis fell and slid into moulins and larger collapse areas in the ice. Thus, differential debris insulation and ice ablation controlled the mainly supraglacial deposition of this part of the nKM.  相似文献   

15.
揭示气候变化的南极冰盖研究新进展   总被引:6,自引:1,他引:6  
秦大河  任贾文 《地理学报》1995,50(2):178-184
南极冰盖是气候的产物,对气候也有反馈作用,冰盖物质平衡变化与全球海平面升降息息相关,并引发地球系统内的一系列变化,南极冰盖是记录全球变化信息的良好载体,具有信息量大,时间序列长,保真性能强,分辨率高以及可进行现代过程定量研究等其他介质无法取代的独特优点,随着科学技术的发展和人类对全球问题的日益重视,南极冰盖与全球变化研究这一领域将会以高起点,多学科互相交叉,渗透为特色,成为未来南极研究的热点领域。  相似文献   

16.
Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard   总被引:3,自引:0,他引:3  
Timing and structure of the Late and post-glacial development of the northern Svalbard margin, together with the initial influx of Atlantic water into the Arctic Ocean are still very poorly constrained. We investigated a sediment core (NP94-51) from a high accumulation area on the continental shelf north of Hinlopen Strait with the purpose of resolving the timing and structure of the last deglaciation. Detailed analyses of ice-rafted detritus, benthic and planktonic foraminiferal fauna, diatom flora, grain size and radiocarbon dates are used to reconstruct the palaeoceanographic evolution of the area. Our results indicate that the disintegration of Hinlopen Strait ice and possibly the northern margin of the Svalbard Ice Sheet commenced between 13.7 and 13.9 14C Ky BP. Influx of subsurface Atlantic waters into the area (12.6 14C Ky BP) and the retreat of the sea ice cover, with the accompanying opening of the surface waters (10.8 14C Ky BP), happened at different times and both much later than the disintegration of the ice sheets. The transition into the Holocene shows a two-step warming.  相似文献   

17.
The extent of the Barents-Kara Ice Sheet during the eastern Last Glacial Maximum (LGM) is not yet fully known. A detailed echo-sounding survey performed during the Boris Petrov Expedition 2001 permitted the detailed mapping of part of it. Based on the profiling results, a southern connection between the LGM Barents-Kara Ice Sheet and a local ice sheet on Taymyr Peninsula appears to be unlikely. Based on sediment core data and profiling results, most of the terrigenous river-derived material accumulated in the estuaries during late Holocene times, whereas during early Holocene times of lowered sea level major amounts were transported further offshore and accumulated on the shelf. During the post-glacial sea level rise, the main depocentre migrated southward, reaching its present position no earlier than about 6 cal. Ky BP (or 5.2 Kya). Future studies of accelerator mass spectrometry (AMS) 14C-dated sediment cores will allow a detailed reconstruction of the variability of fluvial sediment discharge and the history of glaciation in the Kara Sea during late Quaternary times.  相似文献   

18.
Qin Dahe 《极地研究》1990,2(1):10-19
The densification process within the near-surface layer of Antarctic Ice Sheet is dominated by the environment and exhibits geographic zonality, In this article, the processes are found to be of three types: warm, cold and alternate, on the basis of the studies on a lot of shallow snow/firm cores from Wilkes Land, Antarctica, and the available data. Warm type densification takes place mainly on the periphery of the Antarctic Ice Sheet, where the mean annual temperature is about --10----15℃. High temperature in summer and consequent melting and infiltration are the main factors influencing the densification process. Cold type densification occurs in the huge central region of the Antarctica, where the mean annual temperature is below --25℃, with the maximum below 0℃ in summer. In this region, ice sintering is a main cause for the densification. The alternate type densification occurs in the transition zone between the above two regions, where the mean annual temperature is --15----25℃ and the highest  相似文献   

19.
Observation of the retreat and disintegration of ice shelves around the Antarctic Peninsula during the last three decades and associated changes in air temperature, measured at various meteorological stations on the Antarctic Peninsula, are reviewed. The climatically induced retreat of the northern Larsen Ice Shelf on the east coast and of the Wordie, George VI, and Wilkins ice shelves on the west coast amounted to about 10 000 km2 since the mid-1960s. A summary is presented on the recession history of the Larsen Ice Shelf and on the collapse of those sections north of Robertson Island in early 1995. The area changes were derived from images of various satellites, dating back to a late 1963 image from the recently declassified US Argon space missions. This photograph reveals a previously unknown, minor advance of the northern Larsen Ice Shelf before 1975. During the period of retreat a consistent and pronounced warming trend was observed at the stations on both east and west coasts of the Antarctic Peninsula, but a major cause of the fast retreat and final collapse of the northernmost sections of the Larsen Ice Shelf were several unusually warm summers. Temperature records from the nearby station Marambio show that a positive mean summer temperature was reached for the first time in 1992-93. Recent observations indicate that the process of ice shelf disintegration is proceeding further south on both sides of the Antarctic Peninsula.  相似文献   

20.
南极冰架研究现状与埃默里冰架研究展望   总被引:1,自引:0,他引:1       下载免费PDF全文
南极冰架是揭示南极地区气候变化机制,预测全球气候变化的关键研究区域之一。概述了20世纪以来针对南极冰架所开展的科学研究工作,分别从冰架物质平衡过程、冰架形态特征及其内部结构监测、冰架海底海洋岩芯的沉积特征和冰架附近海域生态系统演化等方面总结了冰架研究所取得的丰硕成果。介绍了中国近几年在东南极洲埃默里冰架进行的科学考察活动,并依据南极冰架研究的国际未来计划提出了中国在埃默里冰架即将继续开展的研究工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号