首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
碱性岩是全球稀土资源的主要来源之一,特别是中-重稀土资源。针对碱性花岗岩体系中稀土(REE)和部分高场强元素(HFSE)超常富集机制及其控制因素等关键科学问题,目前尚缺乏深入系统的研究工作。本文重点关注碱性花岗岩成矿体系中的钠交代作用,对常见的钠长石化、钠铁闪石化和钠辉石化等热液交代过程中的矿物交代反应过程及其稀有稀土元素再活化-迁移过程开展分析和讨论。在碱性岩中,碱性角闪石和辉石被认为是REE和HFSE的重要载体,同时也是岩浆分异演化的有效示踪剂。以中国黑龙江碾子山碱性花岗岩为例,岩浆晚期的热液交代会导致碱性角闪石和辉石从富钙的矿物相向富钠的矿物相转变,在这个相转变过程中会导致REE和HFSE的活化和迁移。特别是岩浆晚期热液富钠霓辉石的形成过程中REE和HFSE会大规模释放到交代流体中,可能是导致这些关键金属元素在岩浆晚期超常富集和成矿的关键控制因素。因此,碱性角闪石和辉石的钠指数[Na#=Na/(Na+Ca)摩尔比]可能是一个潜在的矿物地球化学指标,或将为碱性岩型稀土资源勘查提供新的方法。  相似文献   

2.
尕林格矽卡岩型铁多金属矿床位于青海东昆仑祁漫塔格造山带与柴达木盆地结合带中部。电气石作为矿区内普遍出现的矿物,部分呈半自形-自形粒状出现在正接触带矽卡岩化蚀变火山岩中(Tour-Ⅰ),也有呈他形粒状形式出现在外接触带变质砂岩中(Tour-Ⅱ)。因其生长化学行为与寄主岩石和流体的化学属性强烈相关,所以电气石的主、微量元素成分为研究热液体系背景下的流体演化及成矿物质来源提供了渠道。尕林格电气石的化学成分包括富Na-Mg的镁电气石和富Ca-Mg的钙镁电气石。Tour-Ⅰ中的环带电气石存在早期核部(Gen-1)被晚期边部(Gen-2)交代的不连续反应边特征。Gen-1为钙镁电气石,而Gen-2为镁电气石。由于镁铁质火山岩的缓冲作用,Gen-1更多地显示出原地寄主岩石的化学成分。随着流体的持续补充,Gen-2则更多地与流体成分保持平衡,显示出较窄的变化范围,与成矿密切相关。Gen-1比Gen-2更加富Fe,意味着流体中Fe浓度降低;而Na含量逐渐上升则暗示流体p H值的升高。尕林格绝大部分矽卡岩电气石都是在早期成核阶段结晶生长的,因为电气石在酸性和中酸性溶液中更加稳定。除此之外,部分Tour-I中还存在沿早期电气石颗粒边缘生长的增生边结构(Gen-3)。Gen-3比Gen-1更加富Ca,推测Gen-3是在相对封闭环境下颗粒间隙溶液作用下的产物。Tour-Ⅱ则既包括钙镁电气石,又含有镁电气石。在Tour-Ⅰ中,Fe和Mg的含量变化范围较大,这与实际观测的Tour-Ⅰ围岩为镁铁质中-基性火山岩密不可分。Tour-Ⅱ比Tour-Ⅰ更加富集B、Ti、Sc、V、Cr、Ga、LREE等元素,这与B的溶解度随流体p H值的升高而升高有关。随着岩浆演化流体p H值的升高,B在相对碱性溶液中大量富集,而大部分微量元素和LREE易与挥发分结合成络合物的形式迁移,因此,B含量高的溶液中部分微量元素和稀土元素含量也会升高。  相似文献   

3.
尕尔穷铜金矿床位于西藏班公湖-怒江成矿带西段,是该带上近年来取得重大勘查突破的矽卡岩(斑岩)型铜金矿床.矿区产出的矽卡岩为典型的钙质矽卡岩,其矽卡岩矿物主要由石榴子石、辉石、硅灰石、绿帘石、绿泥石、符山石、矽线石等组成.电子探针分析结果表明,矿区石榴子石主要为钙铁榴石和钙铝榴石,辉石主要为透辉石,绿泥石可见铁绿泥石及铁镁绿泥石两种.石榴子石成分剖面显示其矿物组分随着石榴子石环带的变化而变化,表明矿区矽卡岩不是在一个完全封闭的平衡条件下形成的,指示矿床形成过程中热液流体具有多期多阶段性.尕尔穷矿区矽卡岩具有良好的分带性,表现为从靠近岩体的深部到靠近围岩的浅部具有石榴子石-透辉石相→透辉石-硅灰石相→硅灰石-绿帘石绿泥石相的分带特征,并伴随一定的矿化组合.典型矽卡岩矿物端员组分的识别及其Fe2+/Fe3+的比值计算结果表明,尕尔穷矿床形成于相对氧化环境.辉石组分中Mn/Fe比值的特征表明尕尔穷矿区具有一定的寻找钼矿的潜力.  相似文献   

4.
通过对比冀南邯邢地区矿山岩体和固镇岩体中角闪石的成分差异和形成的物理化学条件差异,讨论岩浆演化对邯邢式铁矿形成的制约。电子探针分析结果显示,强成矿的矿山岩体中角闪石主要为阳起石和镁角闪石,弱成矿岩体固镇岩体中角闪石主要为镁绿钙闪石、镁角闪石和阳起石,前者角闪石成分相对贫Fe、富Mg、Mn以及F和Cl等挥发分。角闪石矿物温压计计算结果显示:矿山岩体中的角闪石主要为岩浆侵位到浅部以后结晶,形成的温度和压力较低,氧逸度较高,未经历明显的结晶分异作用;固镇岩体中角闪石经历了深部岩浆房的结晶分异过程,而后侵位到浅部,大多形成于深部岩浆房,形成温度高、压力大。两者中角闪石成分特征与结晶时物理化学条件的明显差异表明,含有高挥发分F、Cl的岩浆有利于邯邢式铁矿的形成,角闪石在岩浆房深部的结晶分异过程导致硅酸盐体系中铁被过多和过早的消耗,不利于矽卡岩型铁矿的形成。  相似文献   

5.
冀东马兰峪地区出露较大面积的太古宙含紫苏辉石的英云闪长质片麻岩,其中角闪石矿物的Si、Fe、Mg、Mg/(Mg+Fe)等呈明显的环带特点。研究表明,其成分环带与角闪石生长过程和变质条件有关。不同环带成分的热力学计算得到一条逆时针P-T-t轨迹。该P-T-t轨迹与不同变质阶段平衡共生的矿物温度压力计计算的P-T-t轨迹相似。  相似文献   

6.
用全岩锆饱和温度计和角闪石Al压力计计算得到德兴花岗闪长斑岩体的平均结晶温度为(790±50)℃,压力为(198±60)MPa。以此温压条件为前提,根据化学反应平衡时各组分浓度与反应吉布斯自由能的关系,在假设磷灰石中F-、Cl-与OH-理想替位的前提下,运用电子探针测试及计算得到的花岗闪长斑岩中斑晶矿物磷灰石F-、Cl-、OH-浓度,计算得到磷灰石结晶时流体中HF、HCl的活度分别为0.00079和0.196mol/L。这个浓度代表了岩浆结晶早期分异的初始岩浆流体中HF和HCl的含量特征,且HCl的有效浓度远远大于HF,暗示德兴花岗质岩浆分异的初始岩浆流体富含能与成矿元素Cu形成稳定络合物的挥发性组分Cl,有利于形成花岗质岩浆热液铜矿床。  相似文献   

7.
喇嘛苏铜锌矿位于中亚成矿域西段,为新疆西天山地区相对较早发现的斑岩-矽卡岩铜锌矿床。本文对喇嘛苏铜锌矿矽卡岩和矽卡岩化大理岩中的矽卡岩矿物进行了岩相学及主微量成分分析,首次发现了喇嘛苏铜锌矿床发育的黑榴石和富钛钙铝榴石。对矽卡岩中发育震荡环带的钙铁榴石进行主量元素和电子探针mapping分析,发现钙铁榴石发育不均一的核部,环带部分表现为Al-Fe元素此消彼长的耦合震荡关系;对钙铁榴石从核部中央向边缘环带进行定向原位微量元素LA-ICPMS分析,发现∑REE表现为连续略有降低的趋势、δEu表现出震荡变化。黑榴石和富钛钙铝榴石表现为核幔结构,显示流体氧逸度的降低,流体从超常富集Ti转变为富集Ti。对富钛钙铝榴石进行原位微量元素LA-ICPMS测试,发现富钛钙铝榴石∑REE高于钙铁榴石(钙铝榴石:58.4×10-6~408.4×10-6;钙铁榴石28.2×10-6~108.7×10-6),富钛钙铝榴石具有强烈正Eu异常(δEu=11.3~15.0),钙铁榴石和富钛钙铝榴石均表现为富集轻稀土而亏损重稀土。喇...  相似文献   

8.
浙江漓渚铁矿床系钦杭成矿带东段一典型矽卡岩型矿床,矿体呈透镜状、似层状、不规则状等,产于广山复式花岗岩体外接触带的南华系、震旦系、寒武系和奥陶系层间的矽卡岩中。矿区发育透辉石、石榴子石、铁浅闪石、金云母、绿泥石、榍石等矽卡岩矿物,金属矿物主要包括磁铁矿、黄铁矿、方铅矿、闪锌矿、辉钼矿等。作者利用电子探针技术对漓渚铁矿床中的矽卡岩矿物进行了系统分析,结果表明:漓渚铁矿床矽卡岩演化经历了矽卡岩期和热液蚀变期,其中,矽卡岩期包括辉石-石榴子石阶段、磁铁矿阶段和角闪石-金云母阶段;热液蚀变期包括石英-硫化物阶段和石英-碳酸盐阶段。辉石以透辉石为主,有向钙铁辉石演化的趋势,即Mg+2→Fe+2演化;石榴子石由钙铝榴石向钙铁榴石转变,显示Al+3→Fe+3演化,这些矿物学特征反映了矽卡岩早期的成矿流体中Fe逐渐增加,且氧逸度f(O2)逐渐升高。铁浅闪石具有富Na、K的特征,且铁浅闪石、金云母和榍石等富F以及矽卡岩萤石化现象,反映成矿流体呈碱性、具有富F的特征,有利于Fe的迁移、富集、成矿。漓渚铁矿床的形成与区内广山-柵溪岩体的岩浆活动有关,Fe可能来源于多期岩浆热液。  相似文献   

9.
辽宁赛马岩体是我国典型的产铀碱性杂岩体,但其稀土矿化机制尚不明确.通过光学显微镜、扫描电镜和电子探针分析,得知该岩体从霞石正长岩经霓霞正长伟晶岩至晚期异霞正长岩,代表性稀土矿物层硅铈钛矿[Na2Ca4REETi(Si2O72OF3]不断富集,Nb、Zr和REE(特别是HREE)等高场强元素含量不断升高,部分颗粒具Zr、REE等元素成分环带,以上成分变化与稀土等不相容元素性质、碱性岩浆成分和岩浆结晶分异过程密切相关.此外,层硅铈钛矿经历了一系列的热液蚀变,蚀变部分Ti、Ca、Sr、Na含量增加而Zr、REE含量降低,最终形成由残余层硅铈钛矿+方解石+萤石+铈硅磷灰石组成的假晶,可能与富碱质、F和CO2的自交代流体作用有关.该研究揭示了碱性岩浆演化过程中,层硅铈钛矿成分变化及热液蚀变组合对指示岩浆结晶分异程度、探究稀土元素分馏及其热液活动性的具有重要意义.   相似文献   

10.
尕林格地区铁多金属矿床的围岩为富钙铁矽卡岩类,矿石类型为磁铁矿和硫化物磁铁矿矿石.矿石与围岩具相似的稀土元素地球化学特征,显示其可能来自于同一源区.矿床形成于中高温条件,形成过程中遭受了多次地质作用的改造.矿石矿物的硫、氧同位素组成表明,成矿物质中硫主要为岩浆来源,成矿流体中水则主要源于喷流热液.本研究认为尕林格铁-钴-铋金多金属矿为热水喷流沉积-矽卡岩化改造型矿床.  相似文献   

11.
Twenty-two hornblendes separated from amphibolites and granulites of the Grenville Orogen of Ontario have been quantitatively analyzed for major and minor elements by electron microprobe, for FeO/Fe2O3 by wet chemistry, and for H2O by manometric measurement as H2. Hornblende formulae were calculated on the basis of 24O+OH+Cl+F. Most samples are magnesio-hornblendes, ferroan pargasitic hornblendes and ferroan hastingsitic hornblendes, with weight fractions of Fe3+/(Fe2++Fe3+) ranging from 0.15 to 0.50. An oxy-amphibole component of 0–25 mol%, with an average value of 17 mol%, is obtained for these complete analyses. When compared with structural formulae determined solely from microprobe data, normalization based on 13=Si+Ti+Al+Fe+Mn+Mg cations provides the best approximation to hornblende formulae calculated from the complete analyses. Less satisfactory agreement is obtained from a normalization scheme based on 15=Si+Ti+Al+Fe+Mn+Mg+Ca, while worst agreement is obtained from normalization to 23 oxygens assuming all Fe is Fe2+. No normalization scheme based on microprobe data alone consistently replicates the measured FeO, Fe2O3, and H2O; accurate determination of these values requires complete chemical analysies. Ionic solution models previously have been proposed to evaluate the activity of Ca2Mg5Si8 O22(OH)2(a Trem) in hornblende for use in equilibria that constrain the activity of H2O (a H 2O) in igneous and metamorphic rocks. Application of ionic models to typical hornblendes produces low a Trem (usually<0.01), consequetly yielding extremely low a H 2O. If an oxy-amphibole component is present, the calculated a Trem and H2O is further reduced. An oxy-amphibole component of 25% reduces the calculated H2O activity and that of any hydroxyl-amphibole component by 50% below that calculated with simplified assumptions regarding X OH in the hydroxyl site (i.e., X OH=1, or X OH=1–X ClX f). Thus, methods of amphibole normalizations appear to have a substantial effect on calculated amphibole and H2O activites. Before quantitative hornblende thermobarometry can be calibrated and applied, the amounts of FeO, Fe2O3 and H2O must be measured in order to fully characterize hornblende solid solutions.Contribution No. 478 from the Mineralogical Laboratory, University of Michigan  相似文献   

12.
Barium-, Cl- and Ti-rich biotite occurs together with garnet, plagioclase and amphibole within narrow shear zones in 1800 Ma old noritic granulites in the Flakstadøy Basic Complex, Lofoten, north Norway. The granulite facies assemblage, plagioclase, clinopyroxene, orthopyroxene, biotite and ilmenite, was replaced by an amphibolite facies mineral assemblage including Ba-, Cl- and Ti-rich biotite during ductile deformation. Biotite shows complex compositional variations with respect to the contents of Ba, K, Cl, Ti, Al, Fe, Mg and Si. There are correlations between Si, AlIV, K, Ba and Cl and between AlVI and Ti. Titanium and Cl are uncorrelated. The Fe and Mg are correlated to both Cl and Ti. Multivariate analysis shows that most of the compositional variation of biotite can be described by two exchange reactions. This indicates that most of the variation in biotite composition was controlled by two chemical variables of the system. The content of the first exchange component (Ti1.0 Fe0.6 Al -1.1 VI Mg-0.8) in biotite can be related to the original distribution of Ti-bearing minerals in the igneous protolith. The content of the second exchange component (Al 0.4 IV Fe0.8 Ba0.5 Cl1.0 Si-0.4 Mg-1.0 K-0.5 OH-1.0) is related to compositional variations of an externally derived Ba- and Cl-bearing fluid in equilibrium with biotite.The initially low Cl-content of the externally derived fluid was increasing during bioite forming reactions, because OH was preferentially incorporated, relative to Cl, into biotite. Continued hydration/chloridisation reactions resulted in a gradual consumption of the free fluid phase, resulting in local fluid-absent conditions. The composition of biotite reflects the composition of the last fluid in equilibrium with the mineral, i.e. the composition of the fluid immediately before the grain boundaries were fluid-undersaturated. Thus, the variations in biotite composition reflect how the fluid was gradually consumed throughout the shear zone rock. The correlations between Fe, Mg, Ba, K and Cl can be attributed to differences between the structure of the crystal lattices and the sizes of the cation sites of OH-phlogopite and Cl-annite. The dependency of the Fe/Mg ratios of biotite on the Cl-and Ti-content has a strong effect on the Fe–Mg partitioning between biotite and garnet. The relationship between lnKD, X Ti Bt and X Cl Bt can be expressed by the regression equation: lnK D =-1.82+2.60X Ti Bt +5.67X Cl Bt  相似文献   

13.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

14.
K. A. Savko 《Petrology》2006,14(6):567-587
BIF with alkali amphibole at the Lebedinskoe iron deposits, the largest in Russia, were metamorphosed at 550°C and 2–3 kbar and contain ferriwinchite, riebeckite, actinolite, grunerite, and aegirine-augite. All reaction textures observed in the rocks were produced during the prograde metamorphic stage and represent the following succession of mineral replacements: GruRbk, ActWinRbk. Data obtained on the textural relations and compositional variations of Ca, Ca-Na, and Na Al-free amphiboles point to the complete miscibility in the actinolite-ferriwinchite and ferriwinchite-riebeckite isomorphic series. Riebeckite is formed in BIF during the prograde metamorphic stage, with the participation of a fluid insignificantly enriched in Na+ and at increasing oxygen fugacity. The critical factors controlling the development of alkali amphiboles and Ca-Na pyroxenes in carbonate-bearing BIF is the oxygen activity and the presence of at least low concentrations of Na+ ions in the fluid. The minerals contain Fe3+, and all reactions producing them are oxidation reactions. The origin of riebeckite late in the course of the mineral-forming process is caused by the Ca2+Mg2+ → Na+Fe3+ heterovalent isomorphic replacement in calcic and calcic-sodic amphiboles and by the oxidation of grunerite in the presence of a fluid enriched in Na ions.  相似文献   

15.
Amphiboles containing up to 4.2 wt.% Cl are found in felsic granulites from Yanzihe within the North Dabie area of the Dabie–Sulu ultrahigh- and high-pressure metamorphic belt in eastern China. Most amphibole grains show considerable zonations with Cl contents ranging from 0 to 4.2 wt.%. Based on their textural features, amphiboles can be divided into four generations: (1) amphibole occurring as inclusions in orthopyroxene (Am-in) with Cl contents around 3.5 wt.%; (2) amphibole forming cores of grains in the matrix (AM-I) with Cl contents between 3.0 and 4.2 wt.%; (3) amphibole with Cl contents of 0.2 to 2.5 wt.% (Am-II) occurring as hydrothermally altered parts of the original amphibole; (4) Cl-free amphibole (Am-III) usually developed at the outermost rim of the grain. Major and rare earth elements show significant variations for Am-I, Am-II and Am-III.

Different generations of amphiboles are related to different metamorphic stages of the granulite in Yanzihe, and provide a monitor for fluid/rock interactions and P–T evolution during the high-pressure metamorphism of Dabie Shan. Pressure and temperature estimates suggest that Am-in was formed during prograde metamorphism of 10 kbar and 700–800 °C; Am-I was formed under peak metamorphic conditions (20 kbar, 800–960 °C), whereas Am-II and Am-III were formed during retrograde metamorphic stages (560–770 °C and 5–7 kbar, and 520–670 °C and <5 kbar, respectively). In contrast to most previous studies, in which the earliest amphiboles to form are typically Cl-poor and later amphiboles become progressively Cl-rich, we show that the earliest amphiboles in the investigated rock are Cl-rich and later formed amphiboles are Cl-poor. The present study also demonstrates that the fluid system of the granulites in North Dabie Shan did not evolve in a simple way: while it behaved as a closed system during prograde and peak metamorphism, after the metamorphic peak it probably acted as an open system in which new fluids were introduced. The varying magnitude of Cl contents in amphiboles stresses the very local fluid control during metamorphism.  相似文献   


16.
We report the first kinetic study of iron oxidation in a mica. Large singly-crystal biotite wafers were heated in air to various temperatures and for various times. Room temperature 57Fe Mössbauer spectroscopy was used to quantify the resulting Fe2+ and Fe3+ amounts. A simple activation model is consistent with the measurements and gives an activation energy of e b = 2.36 eV and an attempt frequency of f 0 = 2.9×107 Hz. We are lead to propose that, iron oxidation and ordinary dehydroxylation have the same rate limiting step: local dissociation of an OH group as OH?→O2-+H+. In oxidation this is followed by Fe2+ +H+→Fe3+H whereas in dehydroxylation it is followed by OH? +H+→H2O.  相似文献   

17.
Petrological and geochemical study of volatile bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a spinel lherzolite xenolith suite from Quaternary lavas at Injibara (Lake Tana region, Ethiopian plateau) shows compelling evidence for metasomatism in the lithospheric mantle in a region of mantle upwelling and continental flood basalts. The xenolith suite consists of deformed (i.e., protogranular to porphyroclastic texture) Cl-rich pargasite lherzolites, metasomatized (LILE and Pb enrichment in clinopyroxene and amphibole) at T ? 1000 °C. Lherzolites contain chlorine-rich H2O-CO2 fluid inclusions, but no melt inclusions. Fluid inclusions are preserved only in orthopyroxene, while in olivine, they underwent extensive interaction with the host mineral. The metasomatic fluid composition is estimated: XCO2 = 0.64, XH2O = 0.33, XNa = 0.006, XMg = 0.006, XCl = 0.018, (salinity = 14-10 NaCl eq. wt.%, aH2O = 0.2, Cl = 4-5 mol.%). Fluid isochores correspond to trapping pressures of 1.4-1.5 GPa or 50-54 km depth (at T = 950 °C). Synchrotron sourced micro-infrared mapping (ELECTRA, Trieste) shows gradients for H2O-distribution in nominally anhydrous minerals, with considerable enrichment at grain boundaries, along intragranular microfractures, and around fluid inclusions. Total water amounts in lherzolites are variable from about 150 up to 400 ppm. Calculated trace-element pattern of metasomatic fluid phases, combined with distribution and amount of H2O in nominally anhydrous minerals, delineate a metasomatic Cl- and LILE-rich fluid phase heterogeneously distributed in the continental lithosphere. Present data suggest that Cl-rich aqueous fluids were important metasomatic agents beneath the Ethiopian plateau, locally forming a source of high water content in the peridotite, which may be easily melted. High Cl, LILE, and Pb in metasomatic fluid phases suggest the contribution of recycled altered oceanic lithosphere component in their source.  相似文献   

18.
The phase relations of pyroxenes, amphiboles and associated minerals in metamorphic rocks of the Franciscan Complex can be graphically depicted on a ternary diagram which has at its apices the metamorphic clinopyroxene end members, viz NaAl-NaFe3+-Ca(Fe2+, Mg). Phases are plotted by projection from a constant subassemblage of minerals. This analysis allows interpretation of the effects of pressure, temperature, bulk rock composition and fluid composition on stability of minerals within the Franciscan.Pyroxenes in meta-igneous rocks and metagraywackes have a limited compositional range and fall into two groups: the omphacites, with 50±5% diopside +hedenbergite component; and the jadeitic pyroxenes with 10±5% diopside+hedenbergite. Pyroxenes intermediate between these two groups are unstable relative to assemblages containing Na-amphibole+other minerals.Coexisting pyroxenes and amphiboles in eclogites and associated coarse blueschists comprise equilibrium assemblages, and the proportion of pyroxene to amphibole is a function of rock composition. Eclogites are stable at higher temperature than regionally developed fine-grained greenstones and blueschists in the Franciscan, and at higher pressure than amphibolites. X H2O fluid is not an important factor in the stability of Franciscan eclogite relative to amphibolite.  相似文献   

19.
Compositional data on apatite, phlogopite, and amphibole indicatethat the high-temperature hydrothermal fluids which affectedthe lower portions of the Stillwater and Bushveld Complexeswere Cl-rich. Apatites from the platinum-group element (PGE)ore zones from both complexes are enriched in Cl relative toother cumulus and noncumulus apatites in these intrusions andto apatites from the Skaergaard and Kiglapait Intrusions andthe Great Dyke. Apatites from all five intrusions can be groupedinto three distinct compositional fields: (a) Cumulus apatitesare essentially fluorapatites with molar Cl/(Cl+OH+F) <0?03;(b) noncumulus apatites, with the exception of those from thePGE ore zones of the Stillwater and Bushveld Complexes, haveCl/(Cl+OH+F) <0?20; (c) Cl-rich apatites associated withPGE-rich zones have Cl/(Cl+OH+F) between 0?45 and 1?0. The REEcontent of noncumulus and Cl-rich apatites also show a positivecorrelation with Cl concentration. It is argued that becauseCl is less soluble in silicate melts than F and because meltswith extremely high Cl/F ratios are unknown, the Cl-rich apatitesequilibrated with Cl-rich hydrothermal fluids exsolved duringsolidification of the cumulate sequence. The Cl, F, and OH contents of phlogopites and amphiboles aremore variable. Compositional heterogeneity is due to crystal-chemicalcontrols on halogen contents, variation in the halogen contentof the original melt/fluid phase and subsolidus re-equilibrationduring cooling with both surrounding mineral phases and lowtemperature fluids. However, both the Stillwater and Bushveldphlogopites are enriched in Cl compared to those from the Skaergaardand Kiglapait Intrusions. The compositions of coexisting minerals from the platinum depositof Olivine-Bearing Subzone I of the Stillwater Complex are usedto compute a fluid composition. The fluid is rich in alkalisand iron as well as HCl, and the solution composition is consistentwith fluid compositions deduced for the PGE-bearing secondaryhortonolite pipes of the Bushveld Complex. The high (Pt+Pd)/Irratios of these deposits are also consistent with a hydrothermalorigin, as both Pt and Pd are more soluble in Cl-complexingfluids than Ir.  相似文献   

20.
Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870–0.994 O3(O2?) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014–0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between ?2.52 and ?1.32 log units below the fayalite–magnetite–quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine–orthopyroxene–spinel equilibria (fO2 between ?1.98 and ?0.30 log units). A comparative evaluation of the two methods suggests that when amphibole is present in mantle peridotites, the application of oxy-amphibole equilibrium is preferred, because ol–opx–sp oxy-calibrations are not “sensitive” enough in recording the effects (if any) of amphibole in the peridotite matrix. Amphibole acts as the main H acceptor among the peridotite minerals and may prevent fluid circulation and buffer oxygen fugacity. The important conclusion of this study is that amphibole within the lithospheric mantle does not always means high water activity and oxidizing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号