首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
孙昭杰  李金  黄瑜  桂荣 《中国地震》2018,34(1):71-82
利用新疆区域数字地震台网波形资料,采用CAP方法反演了2015年7月3日新疆皮山6.5级地震主震及部分MS≥3.6余震的震源机制解和距心深度。研究结果显示,皮山6.5级地震主震最佳双力偶解节面I:走向290°/倾角55°/滑动角96°;节面Ⅱ:走向101°/倾角35°/滑动角82°,最佳矩心深度16km,表明该地震是一次逆冲型事件。通过反演部分MS≥3.6余震的震源机制解发现,早期余震的破裂方式与主震较为一致,随着时间的推移余震震源机制出现走滑型和正断型,表明早期余震的破裂受主震影响较大,随着序列的发展变化,后期震源区应力场可能出现一定程度的调整。统计皮山6.5级地震序列P轴方位发现,优势方位为NNE向,与该区域构造应力场方向较为一致。结合地震序列的震源机制及他人精定位结果和震源区地质构造情况,初步解释了导致此次地震的原因。  相似文献   

2.
采用CAP(Cut and Paste)方法反演了2016年1月21日青海门源MS6.4地震的震源机制解,其最佳双力偶解节面I走向339°,倾角49°,滑动角111°:节面Ⅱ走向129°,倾角45°,滑动角68°,矩震级MW5.92,矩心震源深度约为9 km,地震破裂类型为逆冲型地震。结合余震序列展布及震区的活动构造特征,判定发震断层面为节面I,推测此次地震的发震断裂为冷龙岭断裂。  相似文献   

3.
2016年12月8日呼图壁县发生MS6.2地震,由于初始定位误差较大,余震序列分布离散,对呼图壁地震的发震断层尚不清楚。本研究采用CAP方法反演主震及余震中MS ≥ 3.5地震的震源机制解,并采用双差定位方法对余震进行重定位,得到了637个地震的震源参数。结果显示,呼图壁地震主震的最佳双力偶节面解为:节面Ⅰ走向82°,倾角18°,滑动角61°;节面Ⅱ走向292°,倾角74°,滑动角98°。其中节面Ⅱ为本次地震的破裂面。重定位后,主震的震源位置被重定为(86.36°E,43.79°N),震源深度14 km,根据余震的分布特点、震源机制解特征和区域构造特征,呼图壁地震的发震断层并不是南倾的准噶尔南缘断裂,而是在其北边的霍尔果斯-玛纳斯-吐谷鲁断裂带上的一个反冲断层。在北天山区域内,由于构造反转的作用,存在诸多倾角在45°~55°之间的北倾的断层。根据GPS的资料显示,天山北部地区的应力在新生代晚期已开始积累,这增加了天山北部前缘的发震概率。  相似文献   

4.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

5.
尹欣欣  李少华  邹小波  刘旭宙 《地震工程学报》2020,42(5):1065-1076,1084
利用区域测震台网的地震波形及震相数据基于CAP方法反演北纬26°~42°,东经90°~110°内的270个MS>3.0以上地震的震源机制解;并结合GCMT目录和一些前人研究结果中该区域的共759个震源机制解数据,运用SATSI方法计算了研究区域的应力场。将研究区域按1°×1°网格化后得到了154个局部应力场分布结果,从结果上看,整个青藏高原的最大主压应力方向大致表现为顺时针且向右的旋转方式。该结果反映了青藏高原块体向NE和NNE挤压的过程中,分别在其北部和东部受到鄂尔多斯和阿拉善两个坚硬块体的阻挡,造成青藏块体增厚,块体之间物质的侧向流动。对研究区域应力型因子R值的研究显示青海祁连、甘东南区域、四川龙门山断裂带等沿青藏高原块体与阿拉善块体以及鄂尔多斯块体交界处相对应力值偏大,与近年来这些地区的地震活动性成正比。本文研究结果对比其他应力场研究结果、GPS研究结果、以及数值模拟结果具有很好的一致性,可为青藏高原地区的孕震机理、活动构造以及地震趋势判定提供可靠的参考依据。  相似文献   

6.
2015年1月14日乐山金口河M5.0地震发生在历史地震强度较低的川南山区与四川盆地交界一带。基于四川区域地震台网的震相报告与波形资料,采用双差定位法对地震序列进行重新定位,同时,采用CAP波形反演方法及HASH方法反演了主震及序列中8次ML≥2.0地震的震源机制解。另外,利用Coulomb3计算了主震发生后库仑应力改变量,得到的结果如下:①重新定位结果显示,金口河M5.0地震位于(103.18°E,29.32°N),震源深度16.6km,略深于波形反演结果(12km)。序列分布在NNW向天全-荥经断裂和NE向西河-美姑断裂的交汇部位,余震序列在空间上呈NE向展布。②M5.0主震的机制解为节面Ⅰ:走向350°/倾角46°/滑动角107°,节面Ⅱ:走向146°/倾角47°/滑动角73°,表现为走向NW(NNW)、中等倾角的逆冲型运动方式。序列中其余8次ML≥2.0余震大多以走向NE的逆冲型地震为主,个别为走滑或正断层类型。主震和大部分余震的节面方向不一致,主震节面方向与余震长轴方向也不一致。③主震后库仑应力改变量显示,余震主要发生在主震引起的库仑破裂应力增加的区域。综合分析推测,NNW向天全-荥经断裂为本次地震主震的发震构造,倾向NE的机制解节面Ⅰ指出了该断裂的几何产状;M5.0主震发生后,立即触发了其旁侧的NE向西河-美姑断裂,并激发了多次余震。  相似文献   

7.
基于新疆测震台网的宽频带观测记录,利用CAP方法反演2017年8月9日精河MS6.6地震及早期14次MS≥3.0余震的震源机制解,应用MSATSI软件反演震源处应力场。结果表明,此次地震为逆断型,结合震源机制解和附近地质构造背景,推断此次地震的发震构造为库松木契克山前断裂的东段,节面Ⅰ走向89°,倾角43°,滑动角91°为发震断层面。14次余震中有11次为逆断型地震,1次为正断型地震,2次为走滑型地震。P轴在近NS向有明显的优势分布且倾角较小,T轴倾角较陡,表明震源处主要以近NS方向的水平挤压作用为主。反演得到的震源深度分布在12~21 km,深度优势分布为15~20 km,略小于主震的震源深度21 km。应力场的反演结果与震源机制参数统计结果一致,均显示震源处主要受近NS向水平应力场控制。  相似文献   

8.
刘建明  高荣  王琼  聂晓红 《中国地震》2017,33(4):663-670
基于新疆区域数字地震台网震相观测报告,采用HypoDD方法精确定位了精河MS6.6地震序列ML≥1.0地震的震源位置,综合分析了此次地震序列的空间分布特征和可能的发震构造。结果显示,主震震中为44.2639°N、82.8294°E,震源初始破裂深度为17.6km;地震序列总体沿近EW(273°)向单侧扩展,展布长度约20km;震源深度优势分布范围为7~17km;沿余震走向的深度剖面显示,主震向西10km范围内,余震震源有逐渐变浅的趋势,余震序列中尾端向SW方向偏转的地震震源较深;垂直于地震序列的深度剖面显示,地震序列自北向南呈现逐渐加深的变化特征,表明发震断层面倾向为S倾。综合考虑中国地震局地球物理研究所给定的震源机制解以及震源区地质构造情况推测,精河MS6.6地震发震构造可能为库松木契克山前断裂东段。  相似文献   

9.
本研究利用新疆区域数字地震台网的波形资料,采用CAP方法反演了2016年11月25日阿克陶6.7级地震的前震、主震及11次MS ≥ 3.6余震序列的最佳双力偶震源机制解,得到阿克陶6.7级地震最佳双力偶机制解:节面Ⅰ走向20°/倾角69°/滑动角-10°;节面Ⅱ走向114°/倾角81°/滑动角-159°,表明此次阿克陶6.7级地震为一次走滑型地震事件,结合震源区的地震地质构造及余震序列空间分布等已有研究成果,判定节面Ⅱ代表了主震的发震断层面。主震最大主压力轴方位为339°,与震源区附近历史中强震P轴近NW向的优势方位基本一致。其4.8级前震的震源机制解为走滑型,与主震震源机制解具有较高的一致性。11次余震中有6次为走滑型地震,3次为逆断型地震,1次正断型地震,1次混合型地震,且多数地震具有近NW向的P轴方位。此次6.7级地震序列的震源深度分布于6~16km之间,而大部分地震为9~13km,与本文计算得到的主震的震源深度10km相差不大。此外,初步分析了兴都库什-帕米尔地区强震活动与此次阿克陶6.7级地震的关系。  相似文献   

10.
采用吉林、黑龙江、辽宁和内蒙古地震台网记录的地震波形数据,利用ISOLA近震全波形反演方法对2019年5月18日吉林宁江MS5.1地震进行全矩张量反演。结果表明,该地震的最佳断层面解节面Ⅰ走向304°/倾角81°/滑动角26°,节面Ⅱ走向210°/倾角65°/滑动角170°;最佳矩心深度6km,矩震级MW5.0。根据宁江MS5.1地震序列展布形态,推断节面Ⅱ可能为优势发震断层面,即本次地震的主控断裂为扶余-肇东断裂,和与其正交的第二松花江断裂共同控制着余震展布方向。全矩张量解在Husdon震源类型图上的投影显示本次地震具有明显的非双力偶成分,是1次体积增加的张性破裂。根据区域地质构造特征和震源区接收函数、电磁测深和地下热结构等地球物理研究结果,综合分析认为在西太平洋板块作用形成俯冲带的同时,也相应地产生了热物质上涌,这些地球物理过程可能会改变莫霍面形态,使其向上突起并作用于活动断层,从而形成此次吉林宁江MS5.1地震。  相似文献   

11.
The 2010 Yushu MS7.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°E, focal depth 10.22 km) and more than 600 aftershocks were obtained. The focal mechanisms of the mainshock and some aftershocks with MS>3.5 were estimated by jointly using broadband velocity waveforms from Global Seismic Network (GSN) and Qinghai Seismic Network as well. The focal mechanisms and relocation show that the strike of the fault plane is about 125° (WNW-ESE), and the mainshock is left-laterally strikeslip. The parameters of shear-wave splitting were obtained at seismic stations of YUS and L6304 by systematic analysis method of shear-wave splitting (SAM) method. Based on the parameters of shear-wave splitting and focal mechanism, the characteristics of stress field in seismic source zone were analyzed. The directions of polarization at stations YUS and L6304 are different. It is concluded that after the mainshock and the MS6.3 aftershock on April 14, the stress-field was changed.  相似文献   

12.
2022年1月8日,青海省门源县发生MS6.9地震。使用青海、甘肃等区域数字台网所观测到的2009年1月1日—2022年2月8日间青海门源及周边地区(36°~39°N,101°~104°E)14 869次地震事件的地震观测资料,基于双差成像(TomoDD)方法进行重定位分析,结果表明:门源及周边地区地震震源深度较浅,主要集中在5~15 km深度范围,其中10 km附近分布最多。推断该深度区域为门源及周边地区的主要孕震区。基于地震重定位结果和主震区三维速度结构分别对2016年门源MS6.4地震和此次地震序列的发震机理进行分析对比,发现两次地震都位于高速异常体边缘,速度结构与断裂、地震序列吻合较好。2022年门源地震位于高速体的西端末梢位置,是该高速体受青藏高原东北缘顺时针应力作用导致的滑动产生的走滑型地震。  相似文献   

13.
左可桢  赵翠萍 《中国地震》2021,37(2):472-482
使用谱比法计算得到四川长宁地区2018年12月至2019年7月期间442个地震的震源参数,并进一步分析了震源参数之间的相互关系及应力降的时空分布特征。研究区的地震活动主要集中在长宁背斜核部和南部建武向斜页岩气开采区。研究结果显示,该地区ML1.3~4.7地震的应力降位于0.02~7.26MPa范围内,超过90%的地震应力降小于2MPa,应力降总体呈现随震级增大而增大的趋势,但与震源深度的关系并不明显。长宁MS6.0地震发生之前,震源区地震的应力降总体处于较低水平,主震发生之后,短期内余震的应力降较高,随后快速衰减。这些高应力降地震空间上主要集中在长宁余震区的西北段,也是余震强度较大、发生了几次MS>5.0强余震的位置。建武向斜页岩气开采区地震的应力降总体略低于长宁背斜地区,但差异并不显著。  相似文献   

14.
2017年8月8日青藏高原东缘四川九寨沟地区发生7.0级强震,依据前人研究结果分析九寨沟7.0级地震发震构造,并计算震前应力状态。结果显示:本次地震受到构造和历史强震的影响,是发生在历史强震引起的应力加载区域。另外,采用中国地震台网1990年以来的地震目录,在评估目录完整性的基础上,利用最大似然法计算得到2017年8月8日九寨沟7.0级地震前震源区及邻区地震b值空间图像。结果显示,九寨沟7.0级地震发生在四川北部地区显著低b值高应力异常区域内部(0.82b0.75)。所以,研究区域内外历史强震可能促进了九寨沟7.0级地震的发生。  相似文献   

15.
In this paper changes in focal mechanisms) parameters of wave spectra, and stress drops for the Ms=5.0 forcshock and Ms=6.0 mainshock in February 2001 in Yajiang County, Sichuan, and seismicity in cpiccntral region are studied. Comparison of focal mechanisms for the Yajiang earthquakes with distribution patterns of aftcrshocks, the nodal plane Ⅰ, striking in the direction of NEN, of the Yajiang M=5.0 event is chosen as the faulting plane, the nodal plane Ⅱ, striking in the direction of WNW, of the M=6.0 event as the faulting plane. The strikes of the two faulting planes are nearly perpendicular to each other. The level of stress drops in the cpicentral region before the occurrence of the M=6.0 earthquake increases, which is consistent with increase of seismicity in the epicentral region. The rate decay of the Yajiang earthquake sequence, changes in wave spectra for foreshocks and aftershocks,and focal mechanisms are complex.  相似文献   

16.
Using the Cut And Paste (CAP) method, we invert the focal mechanism of 38 moderate earthquakes (MS ≥ 3.0) recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle. Our results indicate that the MS 6.4 mainshock is induced by a lateral strike slip fault (with a rake angle of ~ ?165°) and a little normal-faulting component event along a nearly vertical plane (dipping angle~ 79° and strike ~138°). Combining our results with high resolution catalog, we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault. The focal mechanism evolution can be divided into three periods. During the first period, the foreshock sequence, the focal mechanism consistency is the highest (KA<36°); during the second period which is shortly after the mainshock, the focal mechanism shows strong variation with KA ranging from 8° to 110°; during the third period, the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period (18°<KA<73°). We suggest that the KA, to some extent, represents the coherence between local tectonic stress regime and the stress state of each individual earthquake. Furthermore, high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence.  相似文献   

17.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

18.
In this article, we review the general characteristics of seismicity in and around China and the overall statistics of earthquake damage in 2021, focusing on several significant events and related scientific topics. Among them, the largest event is the MS 7.4 Madoi earthquake in Qinghai Province, northwest China. The event marks another MS ?≥ ?7 earthquake occurring near the boundary of the Bayan Har Block that has ended a remarkable quiescence of the MS ?≥ ?7 earthquakes within the Chinese mainland. In addition, the MS 6.4 Yangbi earthquake in Yunnan Province, southwest China draws the most attention because of its abundant foreshocks, which are well recorded by the densely distributed seismic stations in the surrounding regions. Regarding this event, we review several recent publications focusing on the Gutenberg-Richter b-value change and the physical mechanism of foreshocks associated with this sequence. The MS 6.0 Luxian earthquake in Sichuan Province, southwest China has caused serious damage with a relatively low magnitude, partly because the focal depth of the mainshock is relatively shallow (3.5 ?km). It is another strong earthquake occurring within the southeast Sichuan basin with low historical seismicity yet has increased significantly since 2015, probably due to shale gas development and associated hydraulic fracturing.  相似文献   

19.
The focal mechanism solution of the Shiqu MS 4.4 earthquake occurred on May 16th, 2017 in Sichuan Province is studied by the gCAP method using the waveform data from the regional seismic networks in Sichuan, Qinghai, Tibet and Gansu provinces. The strike/dip/dipping angle of the first nodal plane are 214°/80°/167° and those of the second nodal plane are 306°/77°/10°, the optimal centroid depth is 7.3 ​± ​0.6 ​km and the moment magnitude is MW 4.5. Furthermore, the study investigates the robustness of the results against the error of crustal velocity structure, location, data quality and difference of seismic parameters, subsequently obtaining a stable resolved focal mechanism. According to the geological structure in the seismogenic area, spatial distribution of aftershock sequenceof the regional tectonic stress field, and the focal mechanism of the main shock, we suggest that the Shiqu earthquake is induced by a left-lateral strike-slip mechanism and the second nodal plane is inferred to be the seismogenic fault, consistent with the geometry of the Changshagongma fault which is the secondary fault of the northwest part of the Xianshuihe fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号