首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
《Quaternary Science Reviews》2007,26(5-6):705-731
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial–interglacial transition (ca 15.8–14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6–13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1–12.1 cal kyr BP), warmer and wetter conditions during ca 12.1–8.5 cal kyr BP, a warm and dry phase ca 8.5–5.9 cal kyr BP, cold and wet conditions during ca 5.9–1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6–13.1 and ca 12.1–8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9–1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.  相似文献   

2.
Organic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC yields exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from ? 32.8 to ? 26.2‰ during low water level and from ? 30.1 to ? 27.2‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km? 2 year? 1 for the DOC and from 4.8 to 19.6 t km? 2 year? 1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets.  相似文献   

3.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

4.
The late Wisconsinan Touchet Beds section at Mabton, Washington reveals at least seven stacked jökulhlaup deposits, five showing evidence of post-flood recolonization by vertebrates. Tracemakers are attributed to voles or pocket mice (1–3 cm diameter burrows) and pocket gophers or ground squirrels (3–6 cm diameter burrows). The Mount St. Helens S tephra deposited between flood beds contains the invertebrate-generated burrows Naktodemasis and Macanopsis. Estimates of times between floods are based on natal dispersal distances of the likely vertebrate tracemakers (30–50 m median distances; 127–525 m maximum distances) from upland areas containing surviving populations to the Mabton area, a distance of about 7.9 km. Tetrapods would have required at least two to three decades to recolonize these flood beds, based on maximum dispersal distances. Invertebrate recolonization was limited by secondary succession and estimated at only a few years to a decade. These ichnological data support multiple floods from failure of the ice dam at glacial Lake Missoula, separated by hiatal surfaces on the order of decades in duration. Ichnological recolonization times are consistent with published estimates of refill times for glacial Lake Missoula, and complement the other field evidence that points to repeated, autogenically induced flood discharge.  相似文献   

5.
Lake sediments from four sites in the southwest Yukon Territory, Canada, provided paleotemperature records for the past 2000 yr. An alpine and a forest site from the southeastern portion of the study area, near Kluane Lake, and another alpine-forest pair of lakes from the Donjek River area located to the northwest yielded chironomid records that were used to provide quantitative estimates of mean July air temperature. Prior to AD 800, the southwest Yukon was relatively cool whereas after AD 800 temperatures were more variable, with warmer conditions between ~ AD 1100 and 1400, cooler conditions during the Little Ice Age (~ AD 1400 to 1850), and warming thereafter. These records compare well with other paleoclimate evidence from the region.  相似文献   

6.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

7.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

8.
Late-Holocene environmental and climatic conditions were reconstructed from diatom assemblages in sediment cores from four western Montana lakes: Crevice Lake, Foy Lake, Morrison Lake, and Reservoir Lake. The lakes show synchroneity in timing of shifts in diatom community structure, but the nature of these changes differs among the lakes. Two of the sites provide highly resolved records of hydrologic balance, while the other two stratigraphic sequences primarily record temperature impact on lake thermal structure. All four lakes show significant change in five discrete intervals: 2200–2100, 1700–1600, 1350–1200, 800–600, and 250 cal yr BP. The similarities in the timing of change suggest overlying regional climatic influences on lake dynamics. The 800–600 cal yr BP shift is evident in other paleorecords throughout the Great Plains and western US, associated with the transition from the Medieval Climate Anomaly to the Little Ice Age. Large-scale climatic mechanisms that influence these lake environments may result from atmospheric circulation patterns that are driven by interactions between Pacific and Atlantic sea-surface temperatures, which are then locally modified by topography.  相似文献   

9.
A series of piston cores from Flathead Lake, Montana, USA and a new radiocarbon date from the sedimentary record provide the basis for describing sedimentary processes related to deglaciation of the Flathead Lobe of the Cordilleran Ice Sheet and for interpreting the retreat history of the lobe. The oldest part of Flathead Lake sediment core records is Late Pleistocene in age and consists of cm-scale rhythmites of silt and clay, interpreted here as annual varves. Each varve contains a light-colored coarser-grained portion, inferred to represent deposition during peak annual runoff, and a darker-colored finer-grained portion interpreted to represent sediment accumulation during seasonal low-flow conditions. The coarser-grained portions, especially in the stratigraphically older sections of each core, contain sedimentary structures that reflect traction transport. Based on these sedimentary structures, their facies characteristics, and their spatial distribution within the lake, we interpret the thicker, light-colored portion of each varve to be deposited by hyperpycnal flows caused by seasonal melt events rather than more classic turbidity currents.Immediately overlying Late Pleistocene rhythmites in all Flathead Lake cores is a unique, significantly coarser-grained dm-scale silt bed with a median grain size up to 50 µm. This silt bed has a sharp, locally erosional base and fines upward but does not contain any other sedimentary structures. In contrast to the rhythmites, we interpret this silt bed to represent a single, short-lived catastrophic sedimentation event generated by a large glacial outburst flood. Overlying this distinct bed are several other cm-scale beds of mainly silt that exhibit a basal upward-coarsening followed by an upward-fining median grain size profile. We interpret these beds and their grain size trends as reflecting the rising and falling hydrograph limbs of outburst floods derived from more distal sources located in the upstream parts of the upper Flathead watershed.The sediment record from Flathead Lake, together with results from geologic and geomorphologic 1:24,000 scale mapping around the lake margins, provide a series of constraints regarding the paleogeographic evolution of the area during deglaciation. Overall upward-thinning and upward-fining of the varved portion of the sediment core records reflects northward retreat of the southern Flathead Lobe ice margin starting at latest 14,475 ± 150 cal yr BP, the depositional age of the oldest varve in any of our cores. The depositional age of silt beds overlying the varved records is constrained as between 14,150 ± 150 cal yr BP and 13,180 ± 120 cal yr BP. Within the available chronostratigraphic constraints, the outburst floods interpreted to have delivered this silt to the Flathead Lake basin also downcut a bedrock nick point below the Flathead Lake outlet, oriented a series of large boulders downstream, and deposited a series of large flood bars on the lower Flathead River floodplain.  相似文献   

10.
Relict sand wedges are ubiquitous in southern Patagonia. At six sites we conducted detailed investigations of stratigraphy, soils, and wedge frequency and characteristics. Some sections contain four or more buried horizons with casts. The cryogenic features are dominantly relict sand wedges with an average depth, maximum apparent width, minimum apparent width, and H/W of 78, 39, 3.8, and 2.9 cm, respectively. The host materials are fine-textured (silt loam, silty clay loam, clay loam) till and the infillings are aeolian sand. The soils are primarily Calciargidic Argixerolls that bear a legacy of climate change. Whereas the sand wedges formed during very cold (?4 to ?8 °C or colder) and dry (ca. ≤100 mm precipitation/yr) glacial periods, petrocalcic horizons from calcium carbonate contributed by dustfall formed during warmer (7 °C or warmer) and moister (≥250 mm/yr) interglacial periods. The paleo-argillic (Bt) horizons reflect unusually moist interglacial events where the mean annual precipitation may have been 400 mm/yr. Permafrost was nearly continuous in southern Patagonia during the Illinoian glacial stage (ca. 200 ka), the early to mid-Pleistocene (ca. 800–500 ka), and on two occasions during the early Pleistocene (ca. 1.0–1.1 Ma).  相似文献   

11.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

12.
《Quaternary Science Reviews》2007,26(9-10):1432-1453
The sediments of a small lake on Nordkinnhalvøya, Finnmark, Norway, were investigated in order to test the hypothesis that this region was sensitive to centennial–millennial climatic fluctuations during the Holocene related to changes in ocean circulation. Sedimentation at the site began during the Younger Dryas, although the site chronology, developed using a series of 14C age measurements, reveals an early Holocene hiatus in accumulation. Pollen analysis confirmed that the regional vegetation responded to Holocene climatic variability at centennial–millennial time scales and provided data used to make quantitative palaeoclimate reconstructions. The latter indicate that marked changes in seasonality characterised Holocene climatic fluctuations. Intervals with warmer summers, higher temperature sums and higher precipitation, but cooler winters and generally reduced moisture availability, alternated with intervals with cooler summers, lower temperature sums, lower precipitation, warmer winters and greater moisture availability. The former conditions were more prevalent between ca 8950 and 3950 cal BP, whereas the latter were predominant before ca 8950 and since ca 3950 cal BP. Sediment geochemistry indicates minerogenic material deposited in the lake was probably derived from two or more distinct sources or transport pathways that differed in their responses to palaeoclimatic conditions. A series of cryptotephras were located, although the small size of the shards rendered them unsuitable for electron microprobe analyses. Time-series analysis of pollen analytical and sediment geochemical data indicates that each exhibits statistically significant periodic behaviour (at periods of ca 190, 410, 1050, 1650 and 1810 yr). The periods detected suggest this behaviour may reflect regional expression of climate system responses to solar variability and/or of effects upon tides and ocean circulation of periodic lunar orbital variation. Comparison with records of fluctuations in ocean thermohaline circulation strength indicate some concordance with respect to timing of warmer and cooler intervals, but also some differences. The 8.2 ka event, that is evident in marine records from the Barents Sea, is clearly expressed by both the palaeovegetation and geochemical records. Distinctive temporal behaviour of the palaeovegetation and of different geochemical components indicates complexity in the underlying causes and mechanisms of regional climatic variability; ocean circulation variability alone cannot account for the complex climatic variability observed.  相似文献   

13.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

14.
High-resolution sedimentological and rock magnetic analyses from sediment cores collected in the Seine estuary record changes in coastal sedimentary dynamics linked to climatic variations during the late Holocene. Using AMS 14C and paleomagnetic data we present a first attempt in developing a reliable age model on macrotidal estuarine archives, with a decadal resolution. Correlations between sedimentary successions from the outer Seine estuary document the main sedimentary infilling phases of the system during the last 3000 years. Between 3000 and 1150 cal. BP sedimentary patterns reveal that sequence deposition and preservation are predominantly controlled by marine and tidal hydrodynamics while severe storm events are recorded at ca. 2700 and 1250 cal. BP in the outermost estuary. Conversely, the Medieval Warm Period (MWP; 900–1200 AD) is characterized by a drastic waning of the influence of marine hydrodynamics on sediment preservation. Pronounced episodes of Seine river floods indicate a much stronger impact of continental inputs on sedimentary patterns during this period. The onset of the Little Ice Age marks a diminishing influence of continental inputs while tidal and open marine hydrodynamics again exerted a primary control on the sedimentary evolution of the system during 1200–2003 AD. Coastal sedimentary dynamics as preserved within sedimentary successions appear to have been largely influenced by changes in storminess during the last 3000 years. We have matched the preservation of MWP Seine river floods, as revealed by sedimentological and rock magnetic proxy data, to a prolonged interval of weakened storminess in Normandy permitting the preservation of estuarine flood deposits within a context of reduced coastal erosion in northern Europe. The preservation of sedimentary successions in the Seine estuary is therefore maximal when climate conditions resembled those of the preferred low phase of the NAO on multidecadal timescales such as during 800–1200 AD (MWP). In contrast, increased removal and transport of estuarine sediments occur when winter storm activity greatly intensified over northwestern France. We report four prominent centennial-scale periods of stronger storminess, occurring with a pacing of ~1500 years, which are likely to be related to the last four Bond's Holocene cold events. Our results documenting a close link between coastal sedimentary dynamics, millennial-scale variations in Holocene climate and North Atlantic atmospheric circulation are fairly consistent with other records from Scandinavia, central Greenland and southern Europe.  相似文献   

15.
Pollen analysis from a peat-bog sequence located at 50° 24′ S, 72° 42′ W in the Subantarctic forest – Patagonian steppe ecotone gives information about vegetation and climate changes in Southwestern Patagonia since the glacier retreat. After 11 000 cal yr BP a change from grass steppe to open Nothofagus forest indicates that climatic conditions became rapidly warmer. Development of a closed Nothofagus forest between 5800 and 3200 cal yr BP is interpreted as precipitation increase. During the late Holocene colder climate conditions prevail in response to Neoglacial events. After ca 3000 cal yr BP Nothofagus forest became opener, and after 800 cal yr BP grass steppe expanded. Changes in the forest-steppe ecotone composition as well as the ecotone longitudinal shifts suggest changes in temperature and precipitation. Present-day mean annual precipitation between 300 and 400 mm is associated with grass steppe, and 500–600 mm with a greater forest representation. During the last century, low presence of forest in the area may be related to European settlement and repeated flooding caused by periodic advances of Perito Moreno glacier.  相似文献   

16.
《Quaternary Science Reviews》2005,24(12-13):1375-1389
High-resolution analyses of the elemental composition of calcite and biogenic silica (BSi) content in piston cores from Lake Edward, equatorial Africa, document complex interactions between climate variability and lacustrine geochemistry over the past 5400 years. Correlation of these records from Lake Edward to other climatically-forced geochemical and lake level records from Lakes Naivasha, Tanganyika, and Turkana allows us to develop a chronology of drought events in equatorial East Africa during the late Holocene. Major drought events of at least century-scale duration are recorded in lacustrine records at about 850, 1500, ∼2000, and 4100 cal year BP. Of these, the most severe event occurred between about 2050 and 1850 cal year BP, during which time Lake Edward stood about 15 m below its present level. Numerous additional droughts of less intensity and/or duration are present in the Lake Edward record, some of which may be correlated to other lacustrine climate records from equatorial East Africa. These events are superimposed on a long-term trend of increasingly arid conditions from 5400 to about 2000 cal year BP, followed by a shift toward wetter climates that may have resulted from an intensification of the winter Indian monsoon. Although the causes of decade- to century-scale climate variability in the East African tropics remain obscure, time-series spectral analysis suggests no direct linkage between solar output and regional rainfall. Rather, significant periods of ∼725, ∼125, 63–72, 31–25, and 19–16 years suggest a tight linkage between the Indian Ocean and African rainfall, and could result from coupled ocean-atmosphere variability inherent to the tropical monsoon system.  相似文献   

17.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   

18.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

19.
A stalagmite (BDinf) recovered from an archaeological cave (Bourgeois–Delaunay, La Chaise de Vouthon) in SW France provides a rare, high-resolution, precisely dated continental palaeoclimate record covering the warmest part of the Last Interglacial (128 ± 1–121 ± 1 ka). The growth interval spans the pluvial period recorded in Soreq and Peqiin Cave speleothems (during sapropel event S5), suggesting that the eastern Mediterranean and western Europe experienced relatively wet conditions simultaneously during this part of the Last Interglacial. Stable oxygen and carbon isotope ratios from BDinf show prominent millennial-scale variations, which are interpreted respectively in terms of changes in the amount of rainfall reaching the cave and soil biological activity. The timing of the oxygen isotope changes agrees with similar excursions recorded in speleothems from Corchia Cave (Italy), where close coupling between rainfall amount and regional sea surface temperatures has been demonstrated. Three “warmer–wetter” periods are interspersed with four “cooler–drier” periods. The first “warmer–wetter” period is the most prominent, as is the case at Corchia, and coincides with the SST optimum off western Europe. This is followed by a prominent “cooler–drier” excursion (centred on ~126 ka), which can be linked to a period of increased loess deposition recorded in annually laminated lake sediments from Eifel, Germany. Although there is already ample evidence for Last Interglacial climate instability, we show for the first time that specific climatic events occurred more or less synchronously between southwestern Europe, central Mediterranean (Italy) and northern Europe (Germany).  相似文献   

20.
《Gondwana Research》2014,26(4):1422-1428
A warmer and mostly ice-free South polar region prevailed during the early–middle Eocene, indicative of a low latitudinal temperature gradient. Climatic models mostly fail to reconstruct such a low gradient, demonstrating our poor understanding of the mechanisms involved in heat transfer. Here we describe a new phenomenon that shaped the southern high latitude climate during the early–middle Eocene: the Antarctic summer monsoon. Our palaeoclimatic reconstruction is based on 25 morphotypes of fossil dicotyledonous leaves from the early–middle Eocene fossil leaf assemblage of Fossil Hill from King George Island, the Antarctic Peninsula. We use a novel CLAMP (Climate Leaf Analysis Multivariate Program) calibration which includes new climatic parameters that allow us to characterise better the seasonality in precipitation. Our reconstruction indicates a warm humid temperate climate with strong seasonality in temperature and precipitation. Seasonality in precipitation indicates a rainfall rate of 6.4 ± 1.30 mm/day during summer (summer daily rate of precipitation; SDR) and a summer precipitation representing more than 60.3 ± 8.28% of annual rainfall (ratio of summer precipitation; RSP), which fulfils the definition of a summer monsoon in the modern world. This implies a seasonal alternation of high- and low-pressure systems over Antarctica during the early–middle Eocene. Such a climate regime would have impacted upon global atmospheric circulation and heat transfer. This climatic regime presents a challenge for climatic models and their ability to reconstruct accurately palaeoclimates at high southern latitudes and thereby understand latitudinal heat transfer in a ‘greenhouse Earth’ regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号