首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface exposure dating has become a helpful tool for establishing numeric glacial chronologies, particularly in arid high-mountain regions where radiocarbon dating is challenging due to limited availability of organic material. This study presents 13 new 10Be surface exposure ages from the Kitschi-Kurumdu Valley in the At Bashi Range, Tien Shan. Three moraines were dated to ~ 15, 21 and > 56 ka, respectively, and corroborate previous findings that glacial extents in the Tien Shan during Marine Oxygen Isotope Stage (MIS) 2 were limited compared to MIS 4. This likely documents increasingly arid conditions in Central Asia during the last glacial cycle. Morphological evidence in the Kitschi-Kurumdu Valley and a detailed review of existing numeric glacial chronologies from the Tien Shan indicate that remnants of the penultimate glaciation (MIS 6) are preserved, whereas evidence for MIS 5 glacier advances remains equivocal. Reviewed and recalculated exposure ages from the Pamir mountains, on the other hand, reveal extensive MIS 5 glacial extents that may indicate increased monsoonal precipitation. The preservation of MIS 3 moraines in the Tien Shan and the southern Pamir does not require any monsoonal influence and can be explained alternatively with increased precipitation via the westerlies.  相似文献   

2.
The pollen record of the long succession of marine and continental deposits filling the subsident north-Adriatic foredeep basin (NE Italy) documents the history of vegetation, the landscape evolution and the climate forcing during the last 215 ka at the south-eastern Alpine foreland. The chronology relies on several 14C determinations as well as on estimated ages of pollen-stratigraphical and sea-level event tie-points derived from comparison with high-resolution marine records, speleothemes and ice cores.Mixed temperate rainforests persisted throughout MIS 7a–7c, being replaced by conifer forests after the local glacioeustatic regression during early MIS 6. The Alpine piedmont facing the Adriatic foredeeep was glaciated at the culmination of the penultimate glaciation, as directly testified by in situ fluvioglacial aggradation related to the building of a large morainic amphitheatre. The pollen record allows correlation with other European records and with the IRD from N-Atlantic and off Iberia, thus the duration of the penultimate glacial culmination at the southalpine fringe is estimated less than 13 ka between 148 ± 1 and >135 ka. The site was not reached by the Last Interglacial maximum sea transgression and enregistered a typical, though incomplete, Eemian forest record, lacking Mediterranean evergreen trees. A complex sequence of stadial–interstadial episodes is reconstructed during the Early and Middle Würm: major xerophyte peaks match IRD maxima occurred during Heinrich events in deep-sea cores offshore Iberia and in the N-Atlantic and allows to frame lumps of interstadial phases, marked by Picea peaks, each one including several DO warm events. Broad-leaved thermophilous forests disappeared from the north-eastern plain of Italy at the end of the Early Würm, whereas reduced populations of Abies and Fagus probably sheltered even during the Last Glacial Maximum. A renewed fluvioglacial in situ deposition between 30.4 ± 0.4 and 21.6 ± 0.5 ka cal BP sets the time and duration of the last glacial culmination in the pedemontane morainic amphitheatre. Palynomorphs from Plio-Pleistocene marine successions were reworked by glacier erosion and deposited in the lowland during both the penultimate and the last deglaciation phases. This explains a bias affecting previous pollen records from the region.  相似文献   

3.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

4.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

5.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

6.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

7.
《Quaternary Science Reviews》2005,24(12-13):1391-1411
Temporal and spatial changes in glacier cover throughout the Late Quaternary in Tibet and the bordering mountains are poorly defined because of the inaccessibility and vastness of the region, and the lack of numerical dating. To help reconstruct the timing and extent of glaciation throughout Tibet and the bordering mountains, we use geomorphic mapping and 10Be cosmogenic radionuclide (CRN) surface dating in study areas in southeastern (Gonga Shan), southern (Karola Pass) and central (Western Nyainqentanggulha Shan and Tanggula Shan) Tibet, and we compare these with recently determined numerical chronologies in other parts of the plateau and its borderlands. Each of the study regions receives its precipitation mainly during the south Asian summer monsoon when it falls as snow at high altitudes. Gonga Shan receives the most precipitation (>2000 mm a−1) while, near the margins of monsoon influence, the Karola Pass receives moderate amounts of precipitation (500–600 mm a−1) and, in the interior of the plateau, little precipitation falls on the western Nyainqentanggulha Shan (∼300 mm a−1) and the Tanggula Shan (400–700 mm a−1). The higher precipitation values for the Tanggula Shan are due to strong orographic effects. In each region, at least three sets of moraines and associated landforms are preserved, providing evidence for multiple glaciations. The 10Be CRN surface exposure dating shows that the formation of moraines in Gonga Shan occurred during the early–mid Holocene, Neoglacial and Little Ice Age, on the Karola Pass during the Lateglacial, Early Holocene and Neoglacial, in the Nyainqentanggulha Shan date during the early part of the last glacial cycle, global Last Glacial Maximum and Lateglacial, and on the Tanggula Shan during the penultimate glacial cycle and the early part of the last glacial cycle. The oldest moraine succession in each of these regions varies from the early Holocene (Gonga Shan), Lateglacial (Karola Pass), early Last Glacial (western Nyainqentanggulha Shan), and penultimate glacial cycle (Tanggula Shan). We believe that the regional patterns and timing of glaciation reflect temporal and spatial variability in the south Asian monsoon and, in particular, in regional precipitation gradients. In zones of greater aridity, the extent of glaciation has become increasingly restricted throughout the Late Quaternary leading to the preservation of old (≫100 ka) glacial landforms. In contrast, in regions that are very strongly influenced by the monsoon (≫1600 mm a−1), the preservation potential of pre-Lateglacial moraine successions is generally extremely poor. This is possibly because Lateglacial and Holocene glacial advances may have been more extensive than early glaciations and hence may have destroyed any landform or sedimentary evidence of earlier glaciations. Furthermore, the intense denudation, mainly by fluvial and mass movement processes, which characterize these wetter environments, results in rapid erosion and re-sedimentation of glacial and associated landforms, which also contributes to their poor preservation potential.  相似文献   

8.
Data from eastern England, Scotland, the northern North Sea and western Norway have been compiled in order to outline our current knowledge of the Middle and Late Weichselian glacial history of this region. Radiometric dates and their geological context from key sites in the region are presented and discussed. Based on the available information the following conclusions can be made: (i) Prior to 39 cal ka and most likely after ca 50 cal ka Scotland and southern Norway were extensively glaciated. Most likely the central North Sea was not glaciated at this time and grounded ice did not reach the shelf edge. (ii) During the time interval between 29 and 39 ka periods with ameliorated climate (including the Ålesund, Sandnes and Tolsta Interstadials) alternated with periods of restricted glaciation in Scotland and western Norway. (iii) Between 29 and 25 ka maximum Weichselian glaciation of the region occurred, with the Fennoscandian and British ice sheets coalescing in the central North Sea. (iv) Decoupling of the ice sheets had occurred at 25 ka, with development of a marine embayment in the northern North Sea (v) Between 22 and 19 ka glacial ice expanded westwards from Scandinavia onto the North Sea Plateau in the Tampen readvance. (vi) The last major expansion of glacial ice in the offshore areas was between 17.5 and 15.5 ka. At this time ice expanded in the north-western part of the region onto the Måløy Plateau from Norway and across Caithness and Orkney and to east of Shetland from the Moray Firth. The Norwegian Channel Ice Stream (NCIS), which drained major parts of the south-western Fennoscandian Ice Sheet, was active at several occasions between 29 and 18 ka.  相似文献   

9.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

10.
The remains of former lakes show that in the past the Arabian Peninsula experienced much wetter conditions than today. The last of these humid periods dates to about 10 to 5.5 ka ago. The chronological framework for an earlier humid phase, radiocarbon dated to some 35–20 ka, is inconsistent with evidence from other records from the region. Possibly, these ages are significantly underestimating the true depositional age due to methodological problems. The earliest phase of dune accumulation known so far is dated to the penultimate glaciation maximum of the mid latitudes (ca. 150 ka). Subsequently, dune accumulation occurred around 110 ka, 65 ka and 20 ka ago. All these phases concur with rapid drops in global sea level that caused a drying out of the Persian Gulf basin and of the shelf of the Oman coast. In contrast to some previous interpretations, it is concluded here that aeolian deposition has been limited by sediment supply and not by preservation potential.  相似文献   

11.
Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20–3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.  相似文献   

12.
Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~ 1000 yr, and underwent two stages of retreat separated by a short period of expansion.  相似文献   

13.
The subalpine to montane zones within the Critical Zone (CZ) of the Colorado Front Range, USA outside Pleistocene glaciation limits are characterized by the abundance of stratified and multilayered slope deposits exhibiting depths >1 m. Initial luminescence dating for the upper sediment layers in different profiles give last glacial ages ranging between 40 and 12 ka. A periglacial origin by solifluction is hypothesized for these slope deposits, which is corroborated by geomorphic and sedimentologic parameters. The stratified slope sediments have a strong influence on the physical and chemical properties as well as on soil forming processes in the CZ. Examples are provided for the sediment derived contribution of some elements and common clay minerals together and the great importance of slope sediments as barriers and pathways for the interflow that runs in sediment layers are shown.  相似文献   

14.
Cosmogenic 10Be ages on boulders of 54-51 ka (n = 4) on a penultimate Cordilleran ice sheet (CIS) drift confirm that Marine Oxygen Isotope Stage (MIS) 4 (early Wisconsin) glaciation was extensive in parts of Yukon Territory, the first confirmed evidence in the Canadian Cordillera. We name the glaciation inferred from the mapped and dated drift the Gladstone. These results are in apparent contrast to the MIS 6 (Illinoian) age of the penultimate Reid glaciation to the east in central Yukon but are equivalent to exposure ages on MIS 4 drift in Alaska. Contrasting penultimate ice extents in Yukon requires that different source areas of the northern CIS in Yukon responded differently to climatic forcing during glaciations. The variation in glacier extent for different source areas likely relates to variation in precipitation during glaciation, as the northern CIS was a precipitation-limited system. Causes for a variation in precipitation remain unclear but likely involve the style of precipitation delivery over the St. Elias Mountains possibly related to variations in the Aleutian low.  相似文献   

15.
《Quaternary Science Reviews》2007,26(17-18):2185-2200
Taiwan, located at the junction of the Pacific Ocean, the Eurasian continent, and the South China marginal Sea, is of particular interest for reconstructing paleoclimate periods in Eastern Asia. This study reports the first cosmic ray exposure dating (CRE) of glacial features in Taiwan. Among the areas where glacial relicts have been described in Taiwan, the Nanhuta Shan range is probably the place where glacial landforms are best preserved. We consequently focused on this area combining glacial geomorphology observations together with CRE dating using in situ produced 10Be of erratic boulders and ice-sculpted surfaces. When combined with the geomorphic characteristics of the sampled areas, the obtained minimum CRE ages suggest that the glacial retreat in the Nanhuta Shan commenced about 10±3 ka ago and retreat was complete by 7±1 ka ago. This is consistent with the Holocene warming trend deduced from other biological and physico-chemical paleoclimatic records for the region. Estimates of local bedrock surface denudation rates either directly from in situ produced 10Be measurements or from geomorphic considerations are employed to determine the preservation of such glacial features within the highly dynamic setting of Taiwan.  相似文献   

16.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

17.
《Quaternary Science Reviews》2007,26(3-4):517-535
A pollen profile from Okarito Pakihi Bog in south Westland, New Zealand extending from near present back to Marine Isotope Stage (MIS) 6 provides a continuous record of vegetation and climate change for the past two glacial cycles. Independent chronological control was obtained by AMS radiocarbon dating of organic sediments in the upper part of the sequence and OSL dating of inorganic silts in the lower part, with a unique tie point provided by the ca 26.5 cal ka Kawakawa Tephra. As was probably a common occurrence in this region, the basin developed as a moraine-dammed proglacial lake and remained lacustrine until the early Holocene, when a peat bog developed. Survival of the depositional site through subsequent multiple ice advances, unusual in a glaciated landscape, was probably assisted by lateral displacement of the basin relative to its source area, across the Alpine Fault.There is good correspondence between inferred periods of substantial treeline depression in the pollen profile and the record for ice advance in this region. More cooling events are evident in the pollen record, however, presumably due to the fragmentary nature of glacial geomorphology. The pollen record also shows broad consistency with the MIS record and hence with the Milankovitch orbital forcing model, but with some departures, including an early onset to the last glacial maximum (LGM). Several sub-Milankovitch scale events are also evident, including a mid-LGM warming and Lateglacial reversals during both the last and the penultimate deglaciation.  相似文献   

18.
Here we determined the aminostratigraphy and aminochronology of tufa deposits located in central Spain associated with the Tagus river and some of its tributaries (the Henares, Dulce, Cifuentes, Ruguilla, Trabaque, Escabas and Guadiela rivers). We used aspartic acid and glutamic acid racemization ratios obtained from the ostracod Herpetocypris reptans. Tufa accumulations were found to be of different origins; those in the Henares, Cifuentes and Ruguilla rivers are of paludal origin, while those in the Dulce and Tagus rivers are of fluvial origin. A generally good correspondence was found between the age of the deposits and the position of the terraces above the current thalweg. However, the geomorphological evolution of the Henares, Cifuentes and Ruguilla rivers (infilling of pre-existing valleys) has produced deposits of distinct ages at the same elevation above the current river thalweg, and sometimes, older tufas are located below younger ones.We distinguished eight main tufa-deposition episodes. These occurred predominantly during even Marine Isotopic Stages (MIS), at 406 ± 90 (MIS 11), 264 ± 68 (MIS 7e), 189 ± 40 (MIS 7a), 130 ± 27 (MIS 6-5e), 101 ± 25 (MIS 5c), 32 ± 10 (MIS 3), 14 ± 4 (MIS 1), and 6 ± 2 (MIS 1) ka. These results are in agreement with the dating of similar deposits from nearby areas and other zones of Spain and Europe. The tufa stable-isotope compositions were similar to other examples in central and southern Spain and their plot falls in the same field as other lowland European stream tufas. Oxygen stable isotopes were influenced mainly by temperature and rainfall. The δ13C values indicated a major effect of soil-derived carbon rather than carbon from the catchment area, but moderated in each tributary by evaporation, flow regime and biological effects (photosynthesis).  相似文献   

19.
《Quaternary Science Reviews》2003,22(8-9):943-947
We present 21 radiocarbon dates on 19 charcoal samples from the sedimentary sequence preserved in Border Cave, South Africa. The background radiocarbon activity for charcoal from the cave was determined to be 0.050±0.018 percent modern carbon, from the analysis of a radiocarbon-dead sample from unit 5WA. Radiocarbon ages for individual samples ranged from 25.2 to >58.2 ka BP.The error-weighted mean ages for successively older strata are 38.5+0.85/−0.95 ka BP for unit 1WA, 50.2+1.1/−1.0 ka BP for units 2BS.LR.A and 2BS.LR.B, 56.5+2.7/−2.0 ka BP for unit 2BS.LR.C and 59.2+3.4/−2.4 ka BP for unit 2WA. This radiocarbon chronology is consistent with independent chronologies derived from electron spin resonance and amino acid racemization dating. The results therefore provide further evidence that radiocarbon dating of charcoal by the ABOX-SC technique can yield reliable radiocarbon ages beyond 40 ka BP. They also imply that Border Cave 5, a modern human mandible, predates >58.2 ka BP and that the Middle Stone Age (Mode 3)—Later Stone Age (Mode 5) transition of Border Cave was largely effected between ∼56.5 and ∼41.6 ka ago.  相似文献   

20.
《Quaternary Research》2014,81(3):476-487
The evolution of arid environments in northern China was a major environmental change during the Quaternary. Here we present the dating and environmental proxy results from a 35 m long core (A-WL10ZK-1) collected from the Ulan Buh Desert (UBD), along with supplemental data from four other cores. The UBD is one of the main desert dune fields in China and our results indicate the UBD has undergone complex evolution during the late Quaternary. Most of the present UBD was covered by a Jilantai-Hetao Mega-paleolake lasting until ~ 90 ka ago. A sandy desert environment prevailed throughout the UBD during the last glacial period and early Holocene. A wetland environment characterized by the formation of numerous interdunal ponds in the northern UBD occurred at ~ 8–7 ka, although a dune field persisted in the southern UBD. The modern UBD landscape formed after these wetlands dried up. During the last 2000 years, eolian sand from the Badain Jaran Desert has invaded the northern UBD, while farming and overgrazing resulted in the formation of the eastern UBD. We suggest that the formation of UBD landforms is related to the disintegration of the megalake Jilantai-Hetao and to summer monsoon changes during the last glaciation and Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号