首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s~(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.  相似文献   

2.
Zheng  Minwei  Li  Xiao-Ming  Sha  Jin 《中国海洋湖沼学报》2019,37(1):38-46
In this study, we present a comprehensive comparison of the sea surface wind ?eld measured by scatterometer(Ku-band scatterometer) aboard the Chinese HY-2 A satellite and the full-polarimetric radiometer WindSat aboard the Coriolis satellite. The two datasets cover a four-year period from October2011 to September 2015 in the global oceans. For the sea surface wind speed, the statistical comparison indicates good agreement between the HY-2 A scatterometer and WindSat with a bias of nearly 0 m/s and a root mean square error(RMSE) of 1.13 m/s. For the sea surface wind direction, a bias of 1.41° and an RMSE of 20.39° were achieved after excluding the data collocated with opposing directions. Furthermore,discrepancies in sea surface wind speed measured by the two sensors in the global oceans were investigated.It is found that the larger dif ferences mainly appear in the westerlies in the both hemispheres. Both the bias and RMSE show latitude dependence, i.e., they have signi?cant latitudinal ?uctuations.  相似文献   

3.
海洋二号搭载的笔形圆锥扫描微波散射计(HY2-scat)是国内第一个业务化运行的,可提供大量实时海面风场数据的微波传感器。由于Ku波段散射计测风原理和微波传输特性,受到降雨影响的散射计反演风场数据准确度降低。降雨导致的微波传播路径衰减,雨滴对微波直接后向散射导致的回波能量增加和雨滴对海表面毛细波的干扰等综合效应,使得降雨条件下散射计测风风速计算值偏高,风向计算值偏差较大。针对散射计反演风速受降雨影响的特点引入神经网络模型,使用准确度较高的NWP数值预报模式风场数据作为参考,对受降雨影响的HY-2散射计反演L2B级标准风场数据产品进行校正,改进HY-2散射计反演风矢量在降雨条件下的准确度。与受降雨影响的散射计反演风场风速偏差相比较,经过神经网络校正后的风速偏差减小,说明该方法适用于改善受降雨影响的HY-2散射计测风风速精度。  相似文献   

4.
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.  相似文献   

5.
海面风场是海洋学的基本参量,获取海面风场对了解海洋的物理过程以及海洋与大气之间的相互作用至关重要。宽阔的海域面积及复杂的海面状况通常使南海海面上的风场信息很难被及时获取。ENVISAT ASAR是一种全天候全天时监测海面的微波雷达传感器,可实时获取海面风场数据。本文基于已有ASAR数据对南海海面风场进行反演实验,首先将结合高斯曲线拟合的FFT风向反演方法应用于南海风向反演,并参考Cross-Calibrated Multi-Platform (CCMP)风场数据去除180o方向模糊获得海面风向。然后,将高斯曲线拟合-FFT风向与传统的峰值-FFT风向进行对比,最后将准确率较高的高斯曲线拟合-FFT风向分别输入CMOD4模型和CMOD5模型获得海面风速大小。实验结果与CCMP参考数据的比较结果表明,在风条纹不明显的情况下,利用结合高斯曲线的FFT风向反演方法和CMOD4模型风速反演方法可有效地进行南海海面风场反演。该成果对利用SAR数据实时获取南海大面积海面风场信息,尤其是观测点缺乏海域的风场信息,具有重要的指导意义。  相似文献   

6.
A method for sea surface wind field retrieval from SAR image mode data   总被引:2,自引:0,他引:2  
To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions(GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by combining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval results by a combination method(CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error(RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.  相似文献   

7.
Wind plays an important role in hydrodynamic processes such as the expansion of Changjiang (Yangtze) River Diluted Water (CDW), and shelf circulation in the Changjiang estuary. Thus, it is essential to include wind in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) with high resolution and wide spatial coverage is valuable for measuring spatially inhomogeneous ocean surface wind fields. We have collected 87 ERS-2 SAR images with wind-induced streaks that cover the Cbangjiang coastal area, to verify and improve the validity of wind direction retrieval using the 2D fast Fourier transform method. We then used these wind directions as inputs to derive SAR wind speeds using the C-band model. To demonstrate the applicability of the algorithms, we validated the SAR-retrieved wind fields using QuikSCAT measurements and the atmospheric Weather Research Forecasting model. In general, we found good agreement between the datasets, indicating the reliability and applicability of SAR- retrieved algorithms under different atmospheric conditions. We investigated the main error sources of this process, and conducted sensitivity analyses to estimate the wind speed errors caused by the effect of speckle, uncertainties in wind direction, and inaccuracies in the normalized radar cross section. Finally, we used the SAR-retrieved wind fields to simulate the salinity distribution off the Changjiang estuary. The findings of this study will be valuable for wind resource assessment and the development of future numerical ocean models based on SAR images.  相似文献   

8.
Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.  相似文献   

9.
图像是视觉所及环境的自然再现,具有表达直观、内容丰富的特性,其已成为GIS空间数据采集与应用中一种重要的可视数据源。随着硬件终端的高速发展,集成的传感器愈加丰富,多源传感器信息融合已成为移动GIS数据釆集的发展趋势。针对移动终端获取方位角偏差问题,本文重点阐述了基于移动终端的重力传感器与磁力传感器获取镜头拍摄朝向的算法,并基于EXIF图像格式实现了图像元数据、定位信息、方位信息一体化采集生成可定位图像。针对现有可定位图像以点代面建模方式的不足,本文以镜头视野范围AOV(Angle of View)模型为基础,提出了以图像元数据、位置信息以及方位信息构建图像可视域的方法,并采用多级网格方式对图像可视域面状特征建立空间索引,实现基于可视域的图像检索。在此基础上,针对福建省野外遥感核查采集的8022幅可定位图像,采用点建模及可视域建模2种方式建立检索图像集。从检索速度、检索结果2个方面进行对比分析,表明基于可视域图像检索方法不仅能检索出拍摄位置在检索区域内的图像,还可检索出拍摄位置在检索区域外但实际拍摄场景在检索范围内的图像。同时,通过多级空间网格索引可提升6.22-8.64倍检索速度。  相似文献   

10.
The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use(Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach(Chen et al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.  相似文献   

11.
This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer (HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section (NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function (NSCAT GMF), indicating satisfactory HSCAT performance.  相似文献   

12.
Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.  相似文献   

13.
We compared data of sea surface wind from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) with that collected from eight buoys deployed in the Yellow and East China seas.The buoy data covered a period from 2010 to 2011,during which the longest time series without missing data extended for 329 days.Results show that the ERA-Interim wind data agree well with the buoy data.The regression coefficients between the ERA-Interim and observed wind speed and direction are greater than 0.7 and 0.79,respectively.However,the ERA-Interim wind data overestimate wind speed at most of the buoy stations,for which the largest bias is 1.8 m/s.Moreover,it is found from scatter plots of wind direction that about 13%of the ERA-Interim wind data can be classified as bad for wind speeds below6 m/s.Overall,the ERA-Interim data forecast both the wind speed and direction well,although they are not very representative of our observations,especially those where the wind speed is below 6 m/s.  相似文献   

14.
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.  相似文献   

15.
以CCMP(Cross—Calibrated,Multi—Platfoml)风场为驱动场,分别驱动目前国际先进的第3代海浪模式ww3(WAVEWATCH—III)、SWAN(Simulating WAves Nearshore),对2010年9月发生在东中国海的台风“圆规”所致的台风浪进行数值模拟,就台风浪的特征进行分析,并对比分析两个海浪模式的模拟效果。结果表明:1)以CCMP风场分别驱动WW3、SWAN海浪模式,可以较好地模拟发生在东中国海的台风浪,风向与波向保持了大体一致,波高与风速的分布特征保持了很好的一致性;2)综合相关系数、偏差、均方根误差、平均绝对误差来看,两个模式模拟的有效波高(SWH—Significant Wdve Height)都具有较高精度,SWAN模拟的SWH略低于观测值,WW3模拟的SWH与观测值更为接近;3)台风浪可给琉球群岛海域带来5m左右的大浪,台风浪进入东海后,波高、风速都有一定程度的增加,当台风沿西北路径穿越朝鲜半岛时,受到半岛地形的巨大影响,风速和波高都明显降低。  相似文献   

16.
根据海上溢油试验结果,结合20a来对海上溢油事故的观察结果分析了油类入海后漂流和扩散过程。经分析认为1)海面油类漂流的速度和方向取决于风和表层海流的速度和方向,海面油类漂流的速度和方向基本符合UO=UC+ζW和D=C  相似文献   

17.
Sea bottom stress is conventionally assumed to be directly proportional to the square of the verticallyaveraged velocity,and the drag coefficient to be dependent on the speed and direction of the wind on the sea surface,the depth and dimension of the sea,the period of the tide and so on. In this paper a three-dimensional numerical model is used to discuss the relation the dragcoefficient and the above-mentioned factors.It can be shown from calculation that the relation, is valid,that the drag coefficient is a constant in a major part of a sea as thought conventionally,andthat there is a small area near the coast where the drag coefficient is far greater.We call it singular area. A number of conclusions on the relation between the drag coefficient and the speed and direction ofthe wind,the sea depth and so on,were obtained.  相似文献   

18.
Zhao  Yili  Li  Huimin  Chen  Chuntao  Zhu  Jianhua 《中国海洋湖沼学报》2019,37(3):968-981
HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM) to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content, and rain rate. We verified the RM level 1B brightness temperature(T_B) to retrieve environmental parameters. In the verification, TB that simulated using the ocean-atmosphere radiative transfer model(RTM) was used as a reference. The total bias and total standard deviation(SD) of the RM level 1B T_B, with reference to the RTM simulation, ranged-20.6-4.38 K and 0.7-2.93 K, respectively. We found that both the total bias and the total SD depend on the frequency and polarization, although the values for ascending and descending passes are different. In addition, substantial seasonal variation of the bias was found at all channels. The verification results indicate the RM has some problems regarding calibration, e.g.,correction of antenna spillover and antenna physical emission, especially for the 18.7-GHz channel. Based on error analyses, a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B T_B. Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B T_B was improved significantly. The bias of the recalibrated TB at all channels was reduced to 0.4 K, seasonal variation was almost eradicated, and SD was diminished(i.e., the SD of the 18.7-GHz channel was reduced by more than 0.5 K).  相似文献   

19.
随着经济的快速发展,中国大部分地区空气污染状况日趋严重。空气污染物浓度插值对于进一步分析污染物时空分布情况,估计不同地区人群的暴露风险,制定防范措施具有重要作用。然而,现有空间插值方法由于没有充分考虑风向和风速因素对于污染物扩散的影响,故直接应用于空气污染物浓度插值,会对插值结果造成不利的影响。因此,本文提出一种顾及风向和风速的空气污染物浓度插值方法(Direction-Velocity IDW,DVIDW)。该方法首先根据离散气象站点处的风向和风速数据建立风场表面,然后利用风场数据计算空气污染物的扩散距离,根据扩散距离计算风场中待求点与采样点间的最短路径距离,最后由最短路径距离替代欧式距离进行反距离加权插值。本文分别采用2组实际空气污染物浓度数据,对DVIDW方法和其他常用的空间插值方法进行实验对比分析,验证了本文方法的可行性和优越性。  相似文献   

20.
Analysis of cost functions for retrieving sea surface salinity   总被引:1,自引:0,他引:1  
Two kinds of Bayesian-based cost functions (i.e., the unconstrained cost function and parameter-constrained cost function) are investigated for retrieving the sea surface salinity (SSS). In low SSS regions, we have analyzed the sensitivity of the two cost functions to geophysical parameters. The results show that the unconstrained cost function is valid for retrieving several parameters (including SSS, wind speed and significant wave height), and the constrained cost function, which largely depends on the accuracy of reference values, may lead to large retrieval biases. Furthermore, as a retrieval parameter, the sea surface temperature (SST) can re-sult in the divergence of other geophysical parameters in an unconstrained cost function due to the strong sensitivity of brightness temperature to SST. By using the unconstrained cost function and the simulated brightness temperature TB with white noises, the retrieval biases of SSS are discussed with the following two procedures. Procedure a): the simulated TB values are first averaged, and then SSS is retrieved. Procedure b): the SSS is directly retrieved from the simulated TB , and then the retrieved SSS values are aver-aged. The results indicate that, for low SSS and SST distributions, the SSS retrieval by procedure a) has less biases compared with that by procedure b), while the two procedures give almost the same retrieval results for high SSS and SST sea regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号