首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
根据上海台网观测记录到的上海及邻近地区1985年至1990年期间179次地震事件的资料,以虹桥台、南汇台的两口深井观测地震记录为例,探讨如何利用深井观测速度型记录的最大振幅来测定近震震级。对于400公里以内的地震,本文根据统计规律,提出:在已知系统速度灵敏度K,地震记录的最大振幅A和地震震中距Δ的前提下,速度型记录的近震震级可以表示为M_v=logA/K+blog(Δ)+c误差分析表明,M_v与M_L是比较接近的,结果是可用的。  相似文献   

2.
用地震波的持续时间测定川滇地区的近震震级   总被引:4,自引:0,他引:4       下载免费PDF全文
本文用云南,四川地区的大量地震资料讨论了地震尾波衰减,维式地震仪器静态放大倍数以及震中距与地震波持续时间的关系.求得了川滇地区垂直向和水平向的地震波持续时间tDU测定近震震级的公式:MDZ=0.94+1.57log(tDUV)+0.00136△(1)MDM=0.78+1.60log(tDUM)+0.00114△(2)结果表明,用持续时间 tDU求得的震级标准误差比用振幅求得的震级标准误差要小.说明用这种方法求近震震级也许是较好的方法.   相似文献   

3.
本文从地震矩和尾波掠过时间(Lapse time)的关系,提出与矩震级标度一致的尾波持续时间震级统一标度公式 M_w=logτ+0.1(△/τ)+F(τ)。它适用于各台测定 M_L≤5.0级地震的矩震级。  相似文献   

4.
选取桂、粤、湘,赣、闽五省及其附近地区16个地震31个台站的DD—1短周期地震仪记录资料。用综合回归分析法测定了Lg波传播速度为3.54Kmls,约1秒Lg波埃里相滞弹性衰减系数为r=0.0022±0.0001Km~(-1),并导出五省地区的Lg震级公式: m_(Lg)=LgA_(mxh)+q_s(△)+D_(mh) q_s(△)=5/6Lg△+0.00096△+1.88 计算了该区域内16个地震的各震级值,以及31个台站的台校值。单台震级标准差为0.13~0.15震级单位,台网震级标准差为0.02~0.03震级单位。  相似文献   

5.
本文测定了中国西北六省地区Lg 波的传播速度,V_(Ig)=3. 56km/s;并测得了该区约1秒Lg 波的滞弹性衰减系数,r=0. 0021±0. 0002km~(-1) ,相当于介质品质因子Q=599±56。建立了该区m_(Lg)震级公式m_(Lg)(m×h)=1gA_(m×h)+q_(NW)(Δ)+Dh其中震级校准函数q_(NW)(Δ)=(5/6) 1g△+0. 00091Δ+1. 88  相似文献   

6.
本文在广泛收集西南地区VGK和DD-1短周期地震仪记录资料、测量了Lg波的4种振幅(Lg_z、Lg_h、mxz、mxh)数据及走时数据的基础上,计算得到西南地区Lg波滞弹性衰减系数γ=0.0031±0.0004km~(-1)。西南地区的m_(Lg)震级公式定义为m_(Lg)(m×h)=logA_(mxh)+q_(SW)(△)+D_h 其中震级校准函数q_(SW)(△)=5/6log△+0.00135△+C 对于DD-1仪,常数C=1.73;对VGK仪,C=1.52。当使用振幅A_(LgZ)、A_(Lgh)或A_(mxz)时,则C值分别加0.37、0.24或0.13。m_(Lg)标度基本保持了原西南地区的M_L(SW)的平均震级水平。通过振幅比计算,表明H/Z振幅比与台基有较大的关系:台基越软,振幅比H/Z越大;反之,台基越硬,H/Z越小。本文还对VGK和DD-1仪记录的17个地震的mxh振幅数据计算了平均logA值,发现DD-1仪较VGK仪的logA值平均偏低0.21级。  相似文献   

7.
本文选用东北地区27个台站短周期地震仪记录该地区及其邻近地区的21个地震资料,用综合回归分析法测定了Lg波的滞弹性衰减系数γ=2.7×10~(-3)km~(-1)。由此建立了该区Lg波最大振幅震级公式: mlg=logAh+5/6logΔ+0.0012Δ+1.81 ⑴利用上式测定了47个地震震级,结果表明;1.mlg震级基本维持了原M_L的震级水平,震中距适用范围30~1000km。2.用公式(l)测定震级比用R_1(Δ)测定震级的精度高。  相似文献   

8.
面波震级和它的台基校正值   总被引:8,自引:5,他引:8       下载免费PDF全文
郭履灿  庞明虎 《地震学报》1981,3(3):312-320
本文叙述了我国现行的北京地震台面波震级 Ms 公式的由来, 所使用的公式为Ms=log(A/T)max+(△)系以古登堡-里克特(Gutenberg-Richter)对帕萨迪纳(Pasadena)地震台测定的面波震级为标准, 由国际上与该标准一致的六个著名地震台的面波平均震级制定出北京地震台测定面波震级的起算函数(△).当震中距离△=8-130得到公式(△)=(1.660.09)log△+(3.500.14)对于△=130-180之间的公式, 我们结合中国地震观测的实际情况将吸收系数项作了改进, 求得半经验半理论公式为(△)=6.775+1/2[(2.147e-0.04465△+1.325)(△-90)10-2logsin△+1/3(log△-1.954)]为了提高面波定震级的精确度, 将北京地震台的面波震级标准推广到全国十二个基准台, 利用360个地震的数据算出了各台的台基校正值, 提高了测定面波震级的一致性.   相似文献   

9.
张春芝 《地震研究》1993,16(3):272-280
本文通过对皖23井记录到的59幅水震波图的主要参数的分析,发现该井记录水震波与地震发生的区域有关,存在明显分区记震特征。在分区对比分析的基础上,得到水位振荡幅度与震级、震中距的关系如下:Ⅰ区:logA=-5.0569+0.8906Ms-0.2730log△Ⅱ区:logA=-4.0201+0.8614Ms-0.5855log△Ⅲ区:logA=-3.5998+0.8290Ms-1.0162log△水位振荡持续时间与震级间的关系式如下:Ⅰ区:logT=-6.1248+1.0181MsⅡ区:logT=-4.0189+0.7556MsⅢ区:logT=-5.4129+0.9178Ms文章还对其记震能力作了定量分析,并提出了一种具有普遍意义的衡量水井记震能力的定量分析方法。  相似文献   

10.
研究震源参数与震级之间的定量关系停留在相关统计上是不够的。震源参数与震级之间可能存在着确定性的函数关系(物理关系)。本文利用76个云南地震(4.0≤M_s≤5.8)数据,得到了一组互相一致的云南地震震源参数与面波震级 M_s 的函数关系:M_s=lgM_o-lgr-17.94 s=±0.32M_s=lg△σ+lgA+2.92 s=±0.33M_s=lg(?)+lgr+4.04 s=±0.33式中地震矩 M_o、地震应力降△σ、震源破裂面半径 r、面积 A 及平均断错(?)的单位,分别为达因·厘米、巴、公里、平方公里和厘米。s 为剩余标准差。  相似文献   

11.
12.
13.
A procedure for short-term rainfall forecasting in real-time is developed and a study of the role of sampling on forecast ability is conducted. Ground level rainfall fields are forecasted using a stochastic space-time rainfall model in state-space form. Updating of the rainfall field in real-time is accomplished using a distributed parameter Kalman filter to optimally combine measurement information and forecast model estimates. The influence of sampling density on forecast accuracy is evaluated using a series of a simulated rainfall events generated with the same stochastic rainfall model. Sampling was conducted at five different network spatial densities. The results quantify the influence of sampling network density on real-time rainfall field forecasting. Statistical analyses of the rainfall field residuals illustrate improvement in one hour lead time forecasts at higher measurement densities.  相似文献   

14.
15.
正This journal is established by the Institute of Engineering Mechanics(IEM),China Earthquake Administration,to promote scientific exchange between Chinese and foreign scientists and engineers so as to improve the theory and practice of earthquake hazards mitigation,preparedness,and recovery.To accomplish this purpose,the journal aims to attract a balanced number of papers between Chinese and  相似文献   

16.
Foreword     
Destructive earthquakes have caused great damage in China and the United States and collapsing buildings havecaused many deaths and injuries. The field of earthquake engineering studies earthquake hazards, the occurrence ofearthquakes of various magnitudes, the nature of the ground shaking during an earthquake, the vibration of structuresduring earthquakes, the strengthening of existing structures and the design of new structures to be earthquake resistant,and finally, how to cope with earthquake damage and restore a city to normal functioning. Such efforts are in progressin both countries, but unfortunately, the language barrier interferes with the free flow of information between China andthe Untied States. It would be mutually beneficial if some means could be developed to promote the exchangeof information across the Pacific Ocean. This new journal has been established for this purpose and its success willbe an important step in promoting earthquake engineering in China and the United States.  相似文献   

17.
正President:Giampaolo Di Silvio,Italy Vice Presidents:Ulrich C.E.Zanke,Germany Zhao-yin Wang,China The World Association for Sedimentation and Erosion Research(WASER),inaugurated on Oct.19,2004,is an independent non-governmental,non-profit organization.The mission of WASER is to promote international co-operation on the study  相似文献   

18.
19.
Copyright     
  相似文献   

20.
正Global Change includes climate change and other environmental changes caused by the joint interaction among various layers of Earth. From the positive side, global change provides new opportunities to human and other living forms on Earth. In the meantime, it creates tremendous challenges and negative impact. At present, the negative impacts have reached all primary processes of the global ecosystem and every aspect of human society, especially causing degradation of the ecosystem. For instance, intensive deforestation causes decline of biodiversity; global warming causes sea level rise and increases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号