首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yields of carbonyl-containing reaction products from the ozonolysis of α-pinene have been investigated using concentrations of ozone found in the indoor environment ([O3] ≤ 100 ppb). An impinger was used to collect gas-phase oxidation products in water, where the derivatization agent O-tert-butylhydroxylamine hydrochloride (TBOX) and gas chromatography-mass spectrometry were used to identify carbonyl-containing species. Seven carbonyl-containing products were observed. The yield of the primary product, pinonaldehyde was measured to be 76 %. Using cyclohexane as a hydroxyl radical (?OH) scavenger, the yield of pinonaldehyde decreased to 46 %, indicating the influence secondary OH radicals have on α-pinene ozonolysis products. Furthermore, the use of TBOX, a small molecular weight derivatization agent, allowed for the acquisition of the first mass spectral data of oxopinonaldehyde, a tricarbonyl reaction product of α-pinene ozonolysis. The techniques described herein allow for an effective method for the collection and identification of terpene oxidation products in the indoor environment.  相似文献   

2.
The SL-AV atmospheric model version using hybrid vertical coordinates combies the advantages of sigma and isobaric coordinates. The formulation and discretization of model equations maintain the equivalency of the new model version to the basic sigma version in the special case, when hybrid coordinates coincide with sigma coordinates. The SL-AV model version with hybrid vertical coordinate is verified with medium-range weather forecasts. The decrease in the errors of predicted geopotential height and wind as compared to the sigma model version is demonstrated. The use of hybrid coordinates also leads to a certain increase in forecast skill scores for some meteorological parameters characterizing aviation significant weather.  相似文献   

3.
The aim of this article is to present statistical forecasting models concerning the dynamics of Artemisia pollen seasons in Wroc?aw, including the start and end, the date of maximum pollen concentration and seasonal pollen index (SPI). For statistical evaluation, use was made of aerobiological and meteorological data from the last 10 years (2002–2011). Based on this data, agroclimatic indicators, i.e. crop heat units (CHUs), were determined for various averaging periods. The beginning of the Artemisia pollen season in the studied time period, on average, took place on 23 June. Its length usually varied between 26 and 45 days, and maximum daily concentrations occurred between 31 July and 18 August. It was found that the beginning of the pollen season depends, above all, on the values of CHUs and photothermal unit (PTU) (p?<?0.05) in the period from March to June, for various thermal thresholds. The date of maximum daily concentration correlates with sunshine duration, PTU and air temperature for June and July (p?<?0.05). On the other hand, SPI is connected with thermal variables, i.e. average, maximum and minimum air temperatures and CHUs and heliothermal unit (HTU) for July (p?<?0.05) and the beginning of spring. Based on the correlation analysis and the chosen variables, regression models for the beginning date of Artemisia pollen season and SPI were prepared, which were then verified by using leave-one-out cross-validation. A better fit between modelled and actual values was found for the analysis concerning the season start date than for the SPI.  相似文献   

4.
5.
This paper examines traditional ecological knowledge of weather and climate in Samoa, a Polynesian community in the South Pacific. The research found Samoans have their own unique seasonal calendar. The Samoan seasonal calendar is predominantly based on the observations of local environmental changes, which are in turn influenced by weather and climate. Monitoring changes in plants and animal behaviour, for example, are key indicators used by the Samoans to forecast changes in weather and climate. In addition, their communal and family social activities like hunting, fishing and feasting are driven by the seasonal calendar. The Samoans knowledge of cloud formation, conditions conducive to the formation and onset of severe weather systems and seasonal changes in climate, helped them anticipate, plan and adapt to extreme weather and climate events. The ability and knowledge of the Samoans to forecast the onset of extreme weather and climate events, relying predominantly on local environmental changes are vital tools that should be incorporated in the formulation of human induced climate change adaptation strategies.  相似文献   

6.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

7.
Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2 fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal-to-noise ratio can be used for flux estimations.  相似文献   

8.
The interannual variations in the characteristics of the seasonal cycle (annual and seasonal amplitudes, winter emission, dates of annual minimum and maximum, and phase) and in the growth rate of atmospheric carbon dioxide concentration over Central Siberia are analyzed for the period from May 2009 to January 2016. The results are based on the continuous monitoring of CO2 concentration at the Zotino Tall Tower Observatory (ZOTTO, www.zottoproject.org). It is found that the seasonal amplitude of CO2 concentration in the atmo spheric surface layer over Western Siberia is 26.4 ± 0.8 μmol/mol (no long-term trend toward its increase was revealed), the annual mean growth rate of CO2 is 2.34 μmol/mol per year, its variations range from 1 to 4 μmol/mol per year.  相似文献   

9.
The uptake of water vapor on MgCl2×6H2O and NaCl salt dry solid films was studied over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a flow reactor coupled to a modulated molecular beam mass spectrometer. The H2O to salt uptake data were obtained from the kinetics of H2O loss on salt coated Pyrex rods. The following Arrhenius expression was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: γ 0 (MgCl2) = (6.5 ± 1.0) × 10−6 exp[(470 ± 40)/T] (calculated with specific BET surface area, quoted uncertainties are 1σ statistical). The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: γ (NaCl) ≤ 5.6 × 10−6 at T = 300 K. The results show that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition.  相似文献   

10.
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30–07:30 IST) and afternoon time (16:00–18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12° 58′ N, 77° 38′ E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of ~7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by ~2‰ compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) “polluted air” (PA) with isotopically enriched “free atmospheric air” (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.  相似文献   

11.
The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5° N, 76.9° E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)–India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.  相似文献   

12.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

13.
Data on salinity and δ18O from the NASA open-source database are used to estimate the Laptev Sea water mass transformation during ice formation and melting. The indicator of these processes is salinity variation. The estimates for the Laptev Sea show that the amount of meltwater can reach 40% for the sea water with salinity below 7 psu. In this case, sea water salinity reduction due to the meltwater inflow alone can be equal to 0.2-0.7 psu. In the sea water with salinity above 7 psu, ice formation prevails over ice melting. This process is the most strongly pronounced in the range of sea water salinity from 15 to 25 psu. In this salinity range, the average water removal for the ice formation makes up 9% (the maximum is 24%), and the average salinity growth is 0.5 psu (the maximum is 1.7 psu). The most transformed sea water masses during ice formation are located in the bottom layer of the shallow southern and southeastern parts of the Laptev Sea, where the sea depth is not more than 50 m.  相似文献   

14.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

15.
The global mean surface temperature (GMST) response of HadCM3 to a 1,000 year 4×CO2 forcing is analysed using a transfer function methodology. We identify a third order transfer function as being an appropriate characterisation of the dynamic relationship between the radiative forcing input and GMST output of this Atmosphere-Ocean General Circulation Model (A-OGCM). From this transfer function the equilibrium climate sensitivity is estimated as 4.62 (3.92–11.88) K which is significantly higher than previously estimated for HadCM3. The response is also characterised by time constants of 4.5 (3.2–6.4), 140 (78–191) and 1,476 (564–11,737) years. The fact that the longest time constant element is significantly longer than the 1,000 year simulation run makes estimation of this element of the response problematic, highlighting the need for significantly longer model runs to express A-OGCM behaviour fully. The transfer function is interpreted in relation to a three box global energy balance model. It was found that this interpretation gave rise to three fractions of ocean heat capacity with effective depths of 63.0 (46.7–85.4), 1291.7 (787.3–2,955.3) and 2,358.0 (661.3–17,283.8) meters of seawater, associated with three discrete time constants of 4.6 (3.2–6.5), 107.7 (68.9–144.3) and 537.1 (196.2–1,243.1) years. Given this accounts for approximately 94% of the ocean heat capacity in HadCM3, it appears HadCM3 could be significantly more well mixed than previously thought when viewed on the millennial timescale.  相似文献   

16.
An hourly quantification of inorganic water-soluble PM10 ions and corresponding trace gases was performed using the Monitor for AeRosols and Gases in ambient Air (MARGA) at the TROPOS research site in Melpitz, Germany. The data availability amounts to over 80% for the five-year measurement period from 2010 to 2014. Comparisons were performed for the evaluation of the MARGA, resulting in coefficients of determinations (slopes) of 0.91 (0.90) for the measurements against the SO2 gas monitor, 0.84 (0.88), 0.79 (1.39), 0.85 (1.20) for the ACSM NO3 ?, SO4 2? and NH4 + measurements, respectively, and 0.85 (0.65), 0.88 (0.68), 0.91 (0.83), 0.86 (0.82) for the filter measurements of Cl?, NO3 ?, SO4 2? and NH4 +, respectively. A HONO comparison with a batch denuder shows large scatter (R2 = 0.41). The MARGA HNO3 is underestimated compared to a batch and coated denuder with shorter inlets (slopes of 0.16 and 0.08, respectively). Less NH3 was observed in coated denuders for high ambient concentrations. Long-time measurements show clear daily and seasonal variabilities. Potential Source Contribution Function (PSCF) analysis indicates the emission area of particulate ions Cl?, NO3 ?, SO4 2?, NH4 +, K+ and gaseous SO2 to lie in eastern European countries, predominantly in wintertime. Coarse mode sea salt particles are transported from the North Sea to Melpitz. The particles at Melpitz are nearly neutralised with a mean molar ratio of 0.90 for the five-year study. A slight increase of the neutralization ratio over the last three years indicates a stronger decrease of the anthropogenically emitted NO3 ? and SO4 2? compared to NH4 +.  相似文献   

17.
Despite great advances in carbon cycle research during the past decade the climatic impact of terrestrial ecosystems is still highly uncertain. Although contemporary studies suggest that the terrestrial biosphere has acted as a net sink to atmospheric carbon during the past two decades, the future role of terrestrial carbon pools is most difficult to foresee. When land use change and forestry activities were included into the Kyoto Protocol in 1997, the requirements for scientific precision increased significantly. At the same time the political expectations of carbon sequestration as climate mitigation strategy added uncertainties of a social kind to the study of land-atmosphere carbon exchange that have been difficult to address by conventional scientific methods. In this paper I explore how the failure to take into account the effects of direct human activity in scientific projections of future terrestrial carbon storage has resulted in a simplified appreciation of the risks embedded in a global carbon sequestration scheme. I argue that the social limits to scientific analysis must be addressed in order to accommodate these risks in future climate governance and to enable continued scientific authority in the international climate regime.  相似文献   

18.
The Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) has been extended to perform as a large-eddy simulation (LES) model. It has been validated with a series of boundary-layer experiments spanning a range of cloud nighttime, and includes a nighttime stratocumulus case, a trade wind cumulus layer, shallow cumulus convection over land, and a mixed regime consisting of cumulus clouds under broken stratocumulus. COAMPS-LES results are in good agreement with other models for all the cases simulated. Exact numerical budgets for the vertical velocity second\((\overline{w^{'2}})\) and third moment\((\overline{w^{'3}})\) have been derived for the stratocumulus and trade wind cumulus cases. For the\(\overline{w^{'3}}\) budget in the stratocumulus, the buoyancy contribution from the updraughts and downdraughts largely cancel each other due to their similar magnitudes but opposite signs. In contrast, for the cumulus layer, the negative buoyancy contribution from the environmental downdraughts is negligible and the positive contribution from the updraughts completely dominates due to the conditional instability in the environment. As a result,\(\overline{w^{'3}}\) is significantly larger in the cumulus than in the stratocumulus layer.  相似文献   

19.
A method for enhancing the calculation of turbulent kinetic energy in the Mellor–Yamada–Janjić planetary boundary-layer parametrization in the Weather Research and Forecasting numerical model is presented. This requires some unconventional selections for the closure constants and an additional stability dependent surface length scale. Single column model and three-dimensional model simulations are presented showing a similar performance with the existing boundary-layer parametrization, but with a more realistic magnitude of turbulence intensity closer to the surface with respect to observations. The intended application is an enhanced calculation of turbulence intensity for the purposes of a more accurate wind-energy forecast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号