首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Benthic foraminifera and stable isotopes analyses revealed changes emerging in the paleoceanographic scenery in the Paratethys. The percentage of inbenthic, oxyphylic taxa and diversity in the benthic foraminiferal assemblage showed increasing food supply (organic matter), decreasing oxygen level and growing stress on the sea floor. Oxygen isotopes measured in planktonic and benthic foraminifera pointed to strengthening stratification during the Badenian period. The carbon isotopes indicated intensified accumulation of light marine organic matter. This increasing stratification trend is especially pronounced by Late Badenian (13.5–13 Ma) when surface water oxygen isotope values are rather negative. A simple two-layer circulation model was worked out for the Badenian Paratethys explaining these characteristic environmental changes. An antiestuarine (lagoonal) circulation is assumed for the Central Paratethys during the Early (16.4–15 Ma) and mid Badenian (15–13.5 Ma). The mid Badenian period of time comprises the short episode of evaporite formation in the Carpathian Foredeep and the Transylvanian Basin. Evidence presented here supported a reversal of circulation to estuarine type after the deposition of salts by Late Badenian (13.5–13 Ma). The Early Badenian antiestuarine circulation is suggested to associate with the high temperatures of the Mid-Miocene Climatic Optimum, and the Late Badenian estuarine circulation with the cooler period following it.  相似文献   

2.
The paleogeographic reconstruction for an early Badenian connection of the Vienna Basin and the Carpathian Foredeep in the Mikulov area (Mikulov Gate) based on paleontological (otoliths) and geological (regional geology, tectonics) data has been provided. The ecologically homogenous deep water associations of otoliths in the most NW tip of the Vienna Basin (Sedlec HJ-2 Borehole) links up bathymetrically with nearly adequate otolith assemblages in the southernmost Moravian part of the foredeep. Ten meso- and bathypelagic teleost species have been identified in the Vienna Basin for the first time. Geological analyses proved inversion processes of recurrent nature along old faults of the NW-SE direction in the Dyje (Thaya) Depression. In the early Badenian the Mikulov Gate resulted from the sagging block of the Waschberg Zone. This marine channel was relatively deep (> 200m, as indicated by otoliths) and in all probability flooded an entire front of the nappes in this area.  相似文献   

3.
Fifty-two ostracod taxa were identified from two sediment cores collected from the early Badenian ?idlochovice stratotype. Ostracod assemblages were analyzed with a focus on taxonomy, paleoecology, distribution of taxa along the sediment cores, quantification of valve/carapace ratios, and species richness by Simpson??s Reciprocal Index. The changes in ostracod assemblages identified in these cores reflect a shallowing of the marine water-depth from circalittoral/epibathyal to shallow infralittoral, and an increase in the sedimentation rate upwards through time. A comparison of all Badenian ostracod assemblages in the Carpathian Foredeep indicates a high proportion of deep-water ostracod species in ?idlochovice and its surroundings, suggesting that the deepest part of the Carpathian Foredeep was probably situated in this part of the Czech Republic.  相似文献   

4.
In southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000mthick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time. During the Late Badenian-Sarmatian, the rate of advance of the Carpathian accretionary wedge was lower than that of pinch-out migration and, as a result, the basin widened. The Miocene convergence of the Carpathian wedge resulted in the migration of depocentres and onlap of successively younger deposits onto the foreland plate.  相似文献   

5.
In the middle Miocene Badenian gypsum basin of the Carpathian Foredeep, west Ukraine, three main zones of gypsum development occur in the peripheral parts of the basin. Zone I consists entirely of stromatolitic gypsum formed in a nearshore zone. Zone II is located more basinward and is characterized by stromatolitic gypsum in the lower part of the section, overlain by a sabre gypsum unit. Zone III occurs in still more basinward areas and is characterized by giant gypsum intergrowths (or secondary nodular gypsum pseudomorphs of these) in the lowermost part, overlain by stromatolitic gypsum, sabre gypsum and then by clastic gypsum units. Correlation between these facies and zones has been achieved using lithological marker beds and surfaces. Of particular importance for correlation is a characteristic marker bed (usually 20–40 cm thick) of cryptocrystalline massive gypsum occurring in zones II and III. The marker was not distinguished in zone I, possibly because this bed is older than the entire gypsum section of that zone. These new results strongly suggest that the deposition of giant gypsum intergrowth facies and stromatolitic gypsum facies was coeval. In some sections of zones I and II, limestone intercalations have been recorded within the upper part of the gypsum sections. Considerable scatter of the δ18O and δ13C values of these limestones indicates variable diagenetic overprints of marine carbonates, but a marine provenance of the limestones is confirmed by microfacies analysis. Some of the limestones are coeval with an intercalation of gypsarenitic, mostly laminated gypsum occurring in the sabre gypsum unit of zones II and III. Badenian gypsum formed in extremely shallow‐water to subaerial environments on broad, very low relief areas of negligible brine depth, which could be affected by rapid transgressions. Stable isotope (δ34S, δ18O) studies of the gypsum demonstrate that the sulphate was of sea‐water origin or was derived from dissolution of Miocene marine evaporites. Investigations of individual inclusions in the gypsum indicate decreased water salinity when compared with modern marine‐derived, calcium sulphate‐saturated water. Groundwater influences are indicated by high calcium sulphate contents of the brines in the evaporite basin. The chemical composition of Badenian waters was thus a mixture of relic sea water (depleted in NaCl), groundwater (enriched in calcium sulphate) and surface run‐off.  相似文献   

6.
Global, glacio-eustatic sea-level changes massively influenced the depositional history of the Central Paratethyan region. Here, we correlate Middle Miocene global δ18O-shifts with ice volume changes on Antarctica and sea-level changes with corresponding phases of erosion (valley incision) and deposition in the Lower Austrian part of the Alpine–Carpathian Foredeep. This allows the exact dating of the valley formation. Two periods of positive δ18O-shifts resulted in sea-level drops of about 60 and 40 m, respectively. The first drop in the late Langhian (middle Badenian) at c. 13.9 Ma (Mi3b) was fast and caused severe erosion on the emerged foredeep. In a second, less pronounced step around 13.0 Ma (Mi4) in the middle Serravallian (late Badenian), the base level was further deepened after a period of alternating erosion and deposition. The combined sea-level change (80–120 m) fits well with the maximum thickness of Sarmatian sediments drilled within incised valley (110 m). The global sea-level falls affected not only the geological history of the foredeep. The intensive erosion (valley incision) is combined with delta progradation in the adjacent Vienna Basin. Due to this massive sea-level drop, the interruption of marine connections resulted in vast salt deposits and faunal crises within the Central Paratethys during this time.  相似文献   

7.
Stable isotope data of the foraminiferal carbonate shells and bulk sediment samples from the Central Paratethys were investigated to contribute to better knowledge of the paleoenvironmental changes in Badenian (Middle Miocene). Five benthic (Uvigerina semiornata, U. aculeata, Ammonia beccarii, Elphidium sp. and Heterolepa dutemplei) and three planktonic taxa (Globigerina bulloides, G. diplostoma and Globigerinoides trilobus), characterising the bottom, intermediate and superficial layers of the water column, were selected from the Vienna Basin (W Slovakia). The foraminiferal fauna and its isotope signal point out to temperature-stratified, nutrient-rich and consequently less-oxygenated marine water during the Middle/Late Badenian. Negative carbon isotope ratios indicate increased input of 12C-enriched organic matter to the bottom of the Vienna Basin. Positive benthic δ18O implies that the global cooling tendency recorded in the Middle Miocene has also affected the intramountain Vienna Basin. In this time, the Central Paratethys has been in the process of isolation. Our stable isotope trend suggests that the communication with Mediterranean Sea has been still more or less active on the south of Vienna Basin (Slovak part) in the Late Badenian, whereas the seawater exchange towards north was apparently reduced already during the Middle Badenian.  相似文献   

8.
The history of Middle to Late Miocene evolution of the Transylvanian Basin was determined by the bordering Carpathian orogen evolution, the tectonic events being well recorded by the sedimentary history. The basin evolved in a back-arc setting, under a regional, compressional stress field. The major tectonic events produced during the Late Sarmatian and Post-Pannonian were related to the reactivation of the pre-Badenian fault systems. The Transylvanian Basin got uplifted after the Late Pannonian (? during the Pliocene), and at least 500 m of sedimentary cover was eroded.

Based on seismic and well-log interpretation, core and outcrop sedimentology, and microfauna, eight sequences were defined. The early Middle Miocene sequences are roughly synchronous to five 3rd order global sea-level cycles. Most of the recognized sequence boundaries are enhanced by regional tectonic events. The sedimentary evolution was also strongly influenced by salt-tectonics, active starting with the Late Sarmatian.

Two sequences were identified in the Lower Badenian deposits. The third sequence (late Early Badenian to early Mid Badenian) preserves information about deeper shelf settings. The lowstand of the following sequence was responsible for the deposition of the salt formation (late Mid Badenian), an important lithostratigraphic marker in the sedimentary record of the basin. In general, the Upper Badenian deposits (parts of the 4th and 5th sequences) belong to deep marine submarine fan systems. The Sarmatian (partially 5th, 6th and partially 7th sequences) was characterized by diverse salinity conditions, stretching from brackish to hypersaline, and by high tectonic instability, which induced several significant relative sea-level falls. During that time, deltaic (north) and fandeltaic (east) systems fed submarine fans, stacked between salt-related submarine heights (“channeled” deep-marine depocenters). Most of the Pannonian deposits (partially 7th and 8th sequences) belong to submarine fan systems, but shallower facies were also found in the western and eastern part of the basin.  相似文献   


9.
The Miocene palaeogeographic evolution of the Paratethys Sea is still poorly constrained. Here, we use modern Mediterranean biochronology to provide an up‐to‐date overview of changing seas in Central Europe. Instead of a Paratethys that waxed and waned with fluctuating global sea levels, we show that the development of different seas was mainly controlled by tectonic phases. The Early Miocene “Ottnangian Sea” (~18 Ma) was connected to the Mediterranean via the Rhône valley, while the “Karpatian Sea” (~16.5 Ma) was initiated by a tectonically induced marine transgression through the Trans‐Tethyan gateway. In most Central European basins, the establishment of the “Badenian Sea” (<15.2 Ma), triggered by subduction‐related processes in the Pannonian and Carpathian domain, is significantly younger (by ~1 Myr) than usually estimated. The updated palaeogeographic reconstructions provide a better understanding of the concepts of basin dynamics, land–sea distribution and palaeoenvironmental change in the Miocene of Central Europe.  相似文献   

10.
Central Asia witnessed progressive aridification during the Miocene, commonly related to mountain uplift, the Paratethys retreat and global climate cooling. However, the formation of Miocene lakes in Central Asia seems to oppose drier conditions, suggesting that the precise timing, extent and forcing of the aridification is still not well constrained. This study presents a facies model for the alluvial–lacustrine part of the Middle to Late Miocene of the Ili Basin, obtained from two successions. The model enables the semi‐quantitative assessment of regional water level and salinity, and characterizes the control of water level on evaporite formation and diagenesis. Both the proximal Kendyrlisai and the distal Aktau successions show an overall increase in water availability from dry mudflat deposits to lacustrine sedimentation with a transitional playa phase. Increasing evaporation rates outpaced the water supply and caused groundwater salinization. Subsequent lake expansion coincided with a basin‐wide desalinization and required a shift to a positive water budget. A climatic control of the hydrological evolution is inferred due to abrupt salinization and a minor tectonic influence. The long‐term water accumulation is probably related to the hydrological closure of the basin in the early Middle Miocene (15·3 Ma). Starting at 14·3 Ma, the step‐wise salinization occurred simultaneously with the global cooling of the Miocene Climate Transition. The Miocene Climate Transition led to extreme aridity in the Ili Basin, highlighted by the early diagenetic formation of displacive anhydrite in the basin centre. The expansion of the freshwater lake (12·7 to 11·5 Ma) was possibly promoted by lower evaporation rates due to decreasing air temperatures in the Ili Basin after the Miocene Climate Transition. The extreme aridity in the Ili Basin is interpreted as a continental counterpart to the Badenian Salinity Crisis in the Central Paratethys. This emphasizes the role of atmospheric forcing on evaporite sedimentation across Eurasia during the Middle Miocene.  相似文献   

11.
The scientific borehole Baden-Sooss penetrates a succession of Badenian (Langhian, Middle Miocene) sediments at the type locality of the Badenian, the old brickyard Baden-Sooss in the Vienna Basin. The sedimentary succession of the 102-m-cored interval consists of more than 95% bioturbated, medium-to-dark gray marly shales with carbonate contents between 11 and 25% and organic carbon contents between 0.35 and 0.65%. Biostratigraphic investigations on foraminifera (mainly lower part of Upper Lagenid Zone) and calcareous nannoplankton (standard zone NN5) indicate an early Badenian (Langhian) age. Cycles in carbonate content, organic carbon content, and magnetic susceptibility have been identified by power spectra analysis. Correlations between the three variables are extremely significant. Using cross-correlation, periods around 40 m correlate significantly with the 100 kyr−1 eccentricity cycle, the ∼20 m periods with the obliquity cycle, and the 15 to 11-m periods with both precession cycles. Wavelet transformation and decomposition of composite periodic functions were used to obtain the position of the cycle peaks in the profile. Cross-correlation with orbital cycles (La2004) dates the Baden-Sooss core between −14.379 ± 1 and −14.142 my ± 9 kyr.  相似文献   

12.
The Early to Middle Miocene Fluviatile Untere Serie lithostratigraphic unit of the Upper Freshwater Molasse (UFM) in the North Alpine Foreland Basin (NAFB) crops out in a 40 m long section at Untereichen-Altenstadt (central part of the NAFB). This section yields a unique superposition of two vertebrate assemblages belonging to different biostratigraphic units: early part OSM C + D (Karpatian) and OSM E (Early Badenian). Detailed taxonomic analyses reveal different diversity patterns in the two assemblages. Nine small mammal and six ectothermic vertebrate taxa occur in the older level UA 540 m, while 20 small mammal and 23 ectothermic vertebrate taxa are recorded for the younger level UA 565 m. From the latter locality comes a small-sized representative of the biostratigraphically significant Megacricetodon lappi lineage. This evolutionary level has not been documented previously for the eastern part of the NAFB. Bioclimatic analysis combined with lithofacies and architectural element analysis indicates that significant changes in the fluvial sedimentation style, surface-water runoff and tectonics occurred between the Early Karpatian and Early Badenian. A meandering fluvial system (marly unit) is erosively overlain by sandy braided river deposits (sandy unit). Overbank deposits of the marly unit revealed that the older vertebrate fossil assemblage (UA 540 m) is deposited in an animal burrow that was presumably produced by owls. Both reptilian and mammalian taxa are indicative of a relatively open environment and dry, probably semi-arid climate. Conversely, vertebrates from the sandy unit (UA 565 m), which are accumulated in channel fill deposits, suggest closed as well as open habitats with a subtropical humid climate and mean annual rainfall of about 1,000 mm. According to the sequence stratigraphic analysis the marly unit is interpreted as a highstand-system-tract of the TB 2.2 global 3rd order sequence. The new results add support to the hypothesis that the erosional unconformity between both sedimentary units spanning the Karpatian-Badenian transition corresponds to the pre-Riesian hiatus, which has been interpreted as part of the Styrian Tectonic Phase, and was previously identified only in the eastern and northeastern part of the NAFB. The biostratigraphic data further indicate that this hiatus lasted longer in the eastern than in the central part of the basin.  相似文献   

13.
Secular variations in stable carbon‐isotope values of marine carbonates are used widely to correlate successions that lack high‐resolution index fossils. Various environmental processes, however, commonly may affect and alter the primary marine carbon‐isotope signal in shallow epicratonic basins. This study focuses on the marine carbon‐isotope record from the carbonate–evaporite succession of the upper Katian (Upper Ordovician) Red River Formation of the shallow epicratonic Williston Basin, USA. It documents the carbon‐isotope signal between the two major Ordovician positive shifts in δ13C, the early Katian Guttenberg and the Hirnantian excursions. Eight δ13C stages are identified based on positive excursions, shifts from positive to negative values and relatively uniform δ13Ccarb values. A correlation between carbon‐isotope trends and the relative sea‐level changes based on gross facies stacking patterns shows no clear relation. Based on the available biostratigraphy and δ13C trends, the studied Williston Basin curves are tied to the isotope curves from the North American Midcontinent, Québec (Anticosti Island) and Estonia, which confirm the Late Katian age (Aphelognathus divergens Conodont Zone) of the upper Red River Formation. The differences in the δ13C overall trend and absolute values, coupled with the petrographic and cathodoluminescence evidence, suggest that the carbon‐isotope record has been affected by the syndepositional environmental processes in the shallow and periodically isolated Williston Basin, and stabilized by later burial diagenesis under reducing conditions and the presence of isotopically more negative fluids.  相似文献   

14.
In the Badenian (middle Miocene) basin of the Carpathian foreland of southern Poland, gypsum breccias occur associated with laminated gypsum deposits. These breccias consist of large clasts of gypsum, carbonates, marls and clay chips of variable size embedded in a gypsarenitic matrix. Constituent gypsum grains and clasts commonly appear to be mechanically abraded and chemically corroded crystals or fragments of selenitic, laminated and alabastrine gypsum. Gypsorudites are commonly accompanied by laminated gypsarenites and gypsolutites which show graded bedding; a vertical sequence of graded gypsum beds showing Bouma sequences may be recognized in borehole sections. Microfolding is common within the folded laminated gypsum, and is closely associated with expressions of extensional strain. Both are accompanied by pervasive microfaulting, suggesting a semi-coherent downslope mass movement. The stratiform geometry of the breccias, together with the intensity of slumping relatively independent of the palaeoslope, suggest earthquake shocks as the initial, main cause. Gypsum deposits form a constant, laterally extensive sequence of different lithofacies. The occurrence of the same lithologies and shallowing-up cycles over a wide area reflects thrusting of the Carpathians over the Carpathian foredeep. Local tectonism has also played a significant role. The tectonic framework favoured activation of dip-slip faults promoting shallow-focus earthquakes. These in turn resulted in the resedimentation of gypsum by slumps, debris flows and turbidites. A similar basinward resedimentation of clastic material by gravity flows initiated by fault-induced earthquakes could be of great importance in the foreland geological setting, and may explain some phenomena observed in other evaporite formations from different geological settings, especially of rift type.  相似文献   

15.
晚第四纪柴达木盆地盐湖成盐期与冰期对比方案的再认识   总被引:1,自引:1,他引:0  
文章以柴达木盆地察汗斯拉图、昆特依和一里坪盐湖共计6个中更新统—全新统含盐地层剖面为研究对象,通过铀系测年和光释光测年测定其成盐年代,利用X射线衍射分析测定其盐类矿物种类.察汗斯拉图D19剖面芒硝和石盐层的铀系年代为(231.5±19.5)~(239.5±40.4)ka BP,对应于深海氧同位素阶段(MIS)7早期;昆...  相似文献   

16.
Primary gypsum is the main evaporite mineral in the middle Miocene (Badenian) of the West Ukraine. The lower part of the gypsum sequence is built of autochthonous gypsum while the upper part is composed of allochthonous gypsum that formed following a major, tectonically induced, change in basin morphology. This change resulted in the destruction of the gypsum deposited on the margins of the basin and formation of redeposition features. Autochthonous gypsum facies were deposited in two main environments: (1) giant gypsum intergrowths precipitated from highly concentrated brines; (2) very shallow subaqueous gypsum deposited in a vast brine pan. The brine pan was characterized by a facies mosaic that reflects an interplay of concentrated brines from the central part of the evaporite basin and diluted brines due to the influx of continental meteoric waters. The facies continuum, microbial gypsum - bedded selenite - massive selenite - sabre gypsum, indicates increasing salinity of the brine with time. This type of facies pattern has been established in recent salinas that are analogous to Badenian gypsum in their lateral facies changes. However, the pattern of facies distribution with respect to the open sea in the Badenian basin is opposite to that found in recent salinas. The pattern of the Badenian gypsum facies in the Ukraine indicates that facies repetition may have been related to climatically controlled salinity changes and not to depth changes, as is commonly used to explain the repetition of sulphate facies in a vertical succession.  相似文献   

17.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

18.
In the Lake Frome area of South Australia there is a sedimentary sequence of non‐marine (or possibly distant marginal marine) pale‐green to grey, fine elastics and carbonates (Namba Formation). The base of these deposits is Medial Miocene in age and they are overlain unconformably by Pleistocene (and ? Pliocene) sediments. The Miocene sequence is equivalent to the Etadunna Formation of the Lake Eyre Basin, and the clay mineralogy is similar.

Combining evidence from mineralogy, palynology, and vertebrate palaeontology, a warm high‐rainfall climate operating on a subdued topography is indicated for the lower part of the Miocene Lake Frome sequence. This caused the illite‐chlorite‐kaolinite suite of the largely Precambrian provenance to be transformed to smectite and randomly‐interstratified clay. A palygorskite‐dolomite assemblage accumulated in alkaline lakes of extreme marginal marine situation during periods of seasonal dry intervals superposed on the previous climate.

A change to illite‐dominated clay, stratigraphically about halfway up the sequence, occurred simultaneously with initial uplift of the Flinders Ranges. These ranges were previously represented by, at the most, a region of low hills. Uplift, without intervention of climatic change, is sufficient to alter the clay mineralogy by promoting increased leaching. Higher in the sequence, and correlated with the major phase of uplift in the Flinders Ranges, smectite re‐appears. In this case the clay suite is believed to have resulted from increased aridity. The smectite‐rich sediments accumulated above the water table in extensive fan and mud‐flow deposits.

The Neogene sequence records a major palaeogeographic change from low energy rivers, swamps, and lakes in a low relief terrain, probably connected to the sea, to a landscape approaching that of the present during Miocene‐Pliocene times. When the Pleistocene Millyera Formation accumulated, the landscape resembled the present, though the ancestral Lake Frome was larger, and rainfall higher.  相似文献   

19.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   

20.
The Miocene Lavanttal Basin formed in the Eastern Alps during extrusion of crustal blocks towards the east. In contrast to basins, which formed contemporaneously along the strike-slip faults of the Noric Depression and on top of the moving blocks (Styrian Basin), little is known about the Lavanttal Basin. In this paper geophysical, sedimentological, and structural data are used to study structure and evolution of the Lavanttal Basin. The eastern margin of the 2-km-deep basin is formed by the WNW trending Koralm Fault. The geometry of the gently dipping western basin flank shows that the present-day basin is only a remnant of a former significantly larger basin. Late Early (Karpatian) and early Middle Miocene (Badenian) pull-apart phases initiated basin formation and deposition of thick fluvial (Granitztal Beds), lacustrine, and marine (Mühldorf Fm.) sediments. The Mühldorf Fm. represents the Lower Badenian cycle TB2.4. Another flooding event caused brackish environments in late Middle Miocene (Early Sarmatian) time, whereas freshwater environments existed in Late Sarmatian time. The coal-bearing Sarmatian succession is subdivided into four fourth-order sequences. The number of sequences suggests that the effect of tectonic subsidence was overruled by sea-level fluctuations during Sarmatian time. Increased relief energy caused by Early Pannonian pull-apart activity initiated deposition of thick fluvial sediments. The present-day shape of the basin is a result of young (Plio-/Pleistocene) basin inversion. In contrast to the multi-stage Lavanttal Basin, basins along the Noric Depression show a single-stage history. Similarities between the Lavanttal and Styrian basins exist in Early Badenian and Early Sarmatian times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号