首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an estimation of the lower limits of local magnetic field strengths in quiescent, activated, and active (surges) prominences, based on reconstructed three-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n e=5×1011?cm?3 in surges and n e=5×1010?cm?3 in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40?Gauss, while in quiescent and activated prominences they were less than 10?Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.  相似文献   

2.
The type II solar radio burst recorded on 13 June 2010 by the Hiraiso Solar Observatory Radio Spectrograph was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well-pronounced band splitting, which we used to estimate the density jump at the shock and Alfvén Mach number using the Rankine–Hugoniot relation. We convert the plasma frequency of the type II burst into height [R] in solar radii using an appropriate density model, and then we estimated the shock speed [V s], coronal Alfvén velocity [V A], and the magnetic-field strength at different heights. The relative bandwidth of the band splitting was found to be in the range 0.2?–?0.25, corresponding to a density jump of X=1.44?–?1.56, and an Alfvén Mach number of M A=1.35?–?1.45. The inferred mean shock speed was on the order of V≈667 km?s?1. From the dependencies V(R) and M A(R) we found that the Alfvén speed slightly decreases at R≈1.3?–?1.5 R. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R≈1.3?–?1.5 R, depending on the coronal-density model employed. Our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our results show that the type II band-splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements are made from white-light observations.  相似文献   

3.
We analyze spectra taken with the 40 cm coronograph at Sacramento Peak Observatory, for evidence of Stark effect on Balmer lines formed in coronal magnetic structures. Several spectra taken near the apex of a bright post-flare loop prominence show significant broadening from H10 to the limit of Balmer line visibility in these spectra, at about H20 The most likely interpretation of the increasing width is Stark broadening, although unresolved blends of Balmer emissions with metallic lines could also contribute to the trend. Less significant broadening is seen in 3 other post-flare loops, and the data from 5 other active coronal condensations observed in this study show no broadening tendency at all, over this range of Balmer number. The trend clearly observed in one post-flare loop requires an ion density of n i ? 2 × 1012 cm?3, if it is to be explained entirely as Stark effect caused by pressure broadening. But mean electron densities measured directly from the Thomson scattering at λ3875 in the same SPO spectra, yield n e ? 3?7 × 1010 cm?3 for the same condensations observed within that loop. Comparison of this evidence from electron scattering, with densities derived from emission measures and line-intensity ratios, argues against a volume filling factor small enough to reconcile the values of n i and n e derived in this study. This discrepancy leads us to suggest that the Stark effect observed in these loops, and possibly also in flares, could be caused by macroscopic electric fields, rather than by pressure broadening. The electric field required to explain the Stark broadening in the brightest post-flare loop observed here is approximately 170 V cm?1. We suggest an origin for such an electric field and discuss its implications for coronal plasma dynamics.  相似文献   

4.
Four surveys in which the geometrical parameters were suitable for observations on weak scattering objects were carried out by the Venera 9, 10 orbiters using 3000–8000 Å spectrometers. The results of one survey can be explained by a dust layer at the height of sighting h = 100–700 km. Its absence in other sessions suggests a ring structure. The spectrum of dust scattering is a power function of the wavelength with the index varying from ?2.1 at 100km to ?1.3 at 500km. A method is proposed for obtaining the optical thickness, density and size distribution of dust particles from the scattering spectra. For m > 10?14 g the number of dust particles with a mass higher than m is proportional to m?1.3. The radial optical thickness τ is 0.7 × 10?5 at 5000 Å assuming the geometric thickness δ to be 100 km. The maximum optical thickness along the normal to the plane of the ring is τn = 4 × 10?6. The mass of the ring is 20 tons or 5 × 10?3 g cm?1 per unit circumference length; the maximum mass in a column normal to the ring plane is 10?10g cm?2; the maximum density (for δ = 100 km) is 10?17 g cm?3. A satellite of Venus gradually destroyed by temperature effects and by meteorite streams and plasma fluxes is suggested as the source of dust in the ring. One of 1 km radius could sustain such a ring for a billion years. The zodiacal light intensity near Venus is estimated.  相似文献   

5.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

6.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

7.
We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
  1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
  2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
  3. ¦δv¦ and ¦δB¦ also display resonant peaks.
  4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
  5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
  6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
  7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
  8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
  9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
  相似文献   

8.
We analyze the observations of a quiescent prominence acquired by the Téléscope Heliographique pour l’Étude du Magnetisme et des Instabilités Solaires (THEMIS) in the He?i 5876 Å (He?i D3) multiplet aiming to measure the spectral characteristics of the He?i D3 profiles and to find for them an adequate fitting model. The component characteristics of the He?i D3 Stokes I profiles are measured by the fitting system by approximating them with a double Gaussian. This model yields an He?i D3 component peak intensity ratio of \(5.5\pm0.4\), which differs from the value of 8 expected in the optically thin limit. Most of the measured Doppler velocities lie in the interval ±?5 km?s?1, with a standard deviation of ±?1.7 km?s?1 around the peak value of 0.4 km?s?1. The wide distribution of the full-width at half maximum has two maxima at 0.25 Å and 0.30 Å for the He?i D3 blue component and two maxima at 0.22 Å and 0.31 Å for the red component. The width ratio of the components is \(1.04\pm0.18\). We show that the double-Gaussian model systematically underestimates the blue wing intensities. To solve this problem, we invoke a two-temperature multi-Gaussian model, consisting of two double-Gaussians, which provides a better representation of He?i D3 that is free of the wing intensity deficit. This model suggests temperatures of 11.5 kK and 91 kK, respectively, for the cool and the hot component of the target prominence. The cool and hot components of a typical He?i D3 profile have component peak intensity ratios of 6.6 and 8, implying a prominence geometrical width of 17 Mm and an optical thickness of 0.3 for the cool component, while the optical thickness of the hot component is negligible. These prominence parameters seem to be realistic, suggesting the physical adequacy of the multi-Gaussian model with important implications for interpreting He?i D3 spectropolarimetry by current inversion codes.  相似文献   

9.
Using the solar tower telescope of Nanjing University, we observed the two large loop prominence groups of 1982 Dec. 20 and 1983 Feb. 9. photographs and spectra around the and H and K lines were obtained simultaneously. From these data, we derived a line of sight velocity distribution, which agrees perfectly with the distribution for matter falling freely without viscosity. From the widths of the and the K lines, we found the loop material to have a uniform kinetic temperature and a turbulent velocity that increases with height. From the central intensities of the lines we derived a density of n(H) ? 1.3 ? 2.6 × 1010cm?3. A possible mechanism of the formation of loop prominence groups and their relation with flares are discussed.  相似文献   

10.
We observed solar prominences with the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory on 30 June 2010 and 15 August 2011. To determine the temperature of the prominence material, we applied a nonlinear least-squares fitting of the radiative transfer model. From the Doppler broadening of the Hα and Ca ii lines, we determined the temperature and nonthermal velocity separately. The ranges of temperature and nonthermal velocity were 4000?–?20?000 K and 4?–?11 km?s?1. We also found that the temperature varied much from point to point within one prominence.  相似文献   

11.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

12.
The flash spectrograms obtained at the June 30, 1973 eclipse contain the monochromatic images of a coronal condensation in three coronal lines of Fexiv 5303, Fex 6374 and Fexi 7892 and Hα line. The assumption of the axially-symmetric distribution of the emissivity in the coronal lines allows us to find the density and temperature structure of the coronal condensation. While the electron density in the central axis of the condensation is about ten times as high as that of the normal corona at each height, the temperature is not so high (T?2.3×106K). This seems to be a representative nature of a coronal active region in the post maximum phase of activity. It is found that there exists a cool and dense core (T = 106K, N e =6 × 109 cm-3 at 17000 km) at the lower part of the coronal condensation, which is in a close geometrical coincidence with the small active prominence protruding from the underlying plage region.  相似文献   

13.
We present coronal density profiles derived from low-frequency (80?–?240 MHz) imaging of three Type III solar radio bursts observed at the limb by the Murchison Widefield Array (MWA). Each event is associated with a white-light streamer at larger heights and is plausibly associated with thin extreme-ultraviolet rays at lower heights. Assuming harmonic plasma emission, we find average electron densities of 1.8\(\times10^{8}\) cm?3 down to 0.20\(\times10^{8}\) cm?3 at heights of 1.3 to 1.9 R. These values represent approximately 2.4?–?5.4× enhancements over canonical background levels and are comparable to the highest streamer densities obtained from data at other wavelengths. Assuming fundamental emission instead would increase the densities by a factor of four. High densities inferred from Type III source heights can be explained by assuming that the exciting electron beams travel along overdense fibers or by radio propagation effects that may cause a source to appear at a larger height than the true emission site. We review the arguments for both scenarios in light of recent results. We compare the extent of the quiescent corona to model predictions to estimate the impact of propagation effects, which we conclude can only partially explain the apparent density enhancements. Finally, we use the time- and frequency-varying source positions to estimate electron beam speeds of between 0.24 and 0.60 c.  相似文献   

14.
We study the 17 January 2010 flare–CME–wave event by using STEREO/SECCHI-EUVI and -COR1 data. The observational study is combined with an analytic model that simulates the evolution of the coronal wave phenomenon associated with the event. From EUV observations, the wave signature appears to be dome shaped having a component propagating on the solar surface ( $\overline{v}\approx280~\mathrm{km}\,\mathrm{s}^{-1}$ ) as well as one off-disk ( $\overline{v}\approx 600~\mathrm{km}\,\mathrm{s}^{-1}$ ) away from the Sun. The off-disk dome of the wave consists of two enhancements in intensity, which conjointly develop and can be followed up to white-light coronagraph images. Applying an analytic model, we derive that these intensity variations belong to a wave–driver system with a weakly shocked wave, initially driven by expanding loops, which are indicative of the early evolution phase of the accompanying CME. We obtain the shock standoff distance between wave and driver from observations as well as from model results. The shock standoff distance close to the Sun (<?0.3 R above the solar surface) is found to rapidly increase with values of ≈?0.03?–?0.09 R , which gives evidence of an initial lateral (over)expansion of the CME. The kinematical evolution of the on-disk wave could be modeled using input parameters that require a more impulsive driver (duration t=90 s, acceleration a=1.7 km?s?2) compared to the off-disk component (duration t=340 s, acceleration a=1.5 km?s?2).  相似文献   

15.
Altitude dependences of [CO2] and [CO2+] are deduced from Mariner 6 and 7 CO2+ airglow measurements. CO2 densities are also obtained from ne radio occultation measurements. Both [CO2] profiles are similar and correspond to the model atmosphere of Barth et al. (1972) at 120 km, but at higher altitudes they diverge and at 200–220 km the obtained [CO2] values are three times less the model. Both the airglow and radio occultation observations show that a correction factor of 2.5 should be included into the values for solar ionization flux given by Hinteregger (1970). The ratio of [CO2+]/ne is 0.15–0.2 and, hence, [O]/[CO2] is ~3% at 135 km. An atmospheric and ionospheric model is developed for 120–220 km. The calculated temperature profile is characterized by a value of T ≈ 370°K at h ? 220 km, a steep gradient (~2°/km) at 200-160 km, a bend in the profile at 160 km, a small gradient (~0.7°/km) below and a value of T ≈ 250°K at 120 km. The upper point agrees well with the results of the Lyman-α measurements; the steep gradient may be explained by molecular viscosity dissipation of gravity and acoustical waves (the corresponding energy flux is 4 × 10?2 erg cm?2sec?1 at 180 km). The bend at 160 km may be caused by a sharp decrease of the eddy diffusion coefficient and defines K ≈ 2 × 108cm2sec?1; and the low gradient gives an estimate of the efficiency of the atmosphere heating by the solar radiation as ? ≈ 0.1.  相似文献   

16.
Sample 14307,30, a gas-rich breccia (Group 1 of Warner, 1972) has been studied by coupling track method and light noble gas isotopic analysis. The breccia is made of a glassy dark matrix with embedded millimeter to sub-millimeter sized angular ligth xenoliths. These ones are breccia fragments of higher grade metamorphic facies (Group ? 2). A lighter strata (~ 0.5 cm thick) intersects the dark matrix. Noble gas analysis have shown the dark matrix (36Ar = 5.4 × 10?4 cc STP/g) to be enriched in solar type gases with respect to the light fractions (36Ar ? 2.2 × 10?4 cc STP/g). Themean value of the bulk ‘exposure age’ for different samplings is 180 ± 20 × 106 yr, as calculated from spallogenic3He,21Ne and126Xe contents, using our data and those of Bogard and Nyquist (1972). After appropriate correction for radiogenic40Ar, the ratio40Arexc/36Artr is about 5. A total of 390 crystals coming from 11 locations either in the dark matrix, the lighter strata or a light xenolith (0.25 cm diam), have been studied by track analysis using optical and scanning electron microscopy. 181 crystals were thoroughly investigated by means of the latter technique. The following results were obtained:
  1. 72 crystals (70-300µm diam) from one location (No. 12) in the matrix show aminimum track density distribution spreading over 3 orders of magnitude (from 2 × 106 up to 2 × 109 cm?2). The spectrum has at its lower edge a well defined peak (~ 50% of total crystal number) around 3 × 106 cm?2). Grains with track density variations over a factor of 3 have a low abundance as compared to average lunar soils. Moreover the mineralogy of this location is peculiar due to its large abundance in orthopyroxenes. Considering the lower edge of the track density distribution amaximum surface residence time of 5 × 106 yr can be set for rock 14307 in itspresent shape;
  2. 11 feldspars (1-15µm diam) and 22 clinopyroxenes (70-130µm) have been studied in the light xenolith. All crystals have minimum track densities larger than 108 cm?2. No spatial variation of track-densities (2.5 ± 0.5 × 109 cm?2) were found in feldspars inside a millimeter-sized polished section. Clearly these tracks were not acquired by an irradiation of the xenolith as an individual entity, but survived its own formation as a breccia of Group 2. Therefore, solar energetic iron particle tracks have not been erased despite a complex mechanical and thermal history involved by two subsequent brecciation processes;
  3. in the 10 other locations, crystals (70-200µm diam) either from the dark matrix or the lighter strata show a significant departure from the pattern observed in lunar soils; namely:
  1. the minimum track density distribution is strongly peaked at high values (~ 1-4 × 109 cm?2) for ~ 95% of the crystals, the remaining ~ 5% having low-values (0.2-1 × 107 cm?2);
  2. the abundance (2%) of crystals with track density variation over a factor of 3 is about one order of magnitude less than in average lunar soils;
  3. the magnitude of track density gradients within single crystals is small. In fact, thelargest track density variation versus depth found can be described by the relation? α D?0.5, in contrast with soil grains which generally exhibit a variation of the form? α D?1.1±0.4.
The above observations imply that the peculiar irradiation characteristics of these fossilized soils are more likely to be attributed to some wide scale process rather than to some accidental or local phenomena. Attempts to account for these findings by present solar VH particle flux and energy distribution (as determined by Crozaz and Walker, 1971; Fleischeret al., 1971b; Priceet al., 1971), current estimates of lunar fine scale erosion, accumulation and turn-over rates, have proven essentially negative. The bulk ‘exposure age’ of the breccia, rather low by lunar soil standards, makes things even worse. For lack of any better explanation, the above observations could be more easily understood by postulating a higher flux (by factors from ~ 10 up to 200) and a harder energy spectrum (at least for particles with rigidity less than 0.3 GV) for the solar cosmic rays at the time the constituents of the breccia were part as loose grains of the lunar regolith.  相似文献   

17.
We present results of the dual-frequency radio sounding of the Venusian ionosphere carried out by the Venera 9 and 10 satellites in 1975. Thirteen height profiles of electron density for different solar zenith angles varying from 10 to 87° have been obtained by analyzing the refraction bending of radiorays in the sounded ionssphere. The main maximum of electron density at a height of 140–150 km depends on the solar zenith angle and is 1.4 to 5 × 105 cm?3. The lower maximum is determined definitely to be at ~130 km high. In the main and lower maxima the electron density variations with solar zenith angle are in good agreement with the Chapman layer theory. For the first time it is found that the height of the upper boundary for the daytime ionosphere (hi) depends regularly on the solar zenith angle. At Z < 60°, hi does not exceed 300 km while at Z > 60°, it increases with Z and comes up to ~ 600 km at Z ~ 80°.  相似文献   

18.
The transport of energy in space plasmas, especially in the solar wind, is far from being understood. Measuring the temperature of the electrons and their non-thermal properties is essential to understand the transport properties in collisionless plasmas. Quasi-thermal noise spectroscopy is a reliable tool for measuring the electron temperature accurately since it is less sensitive to the spacecraft perturbations than particle detectors. We apply this method to Ulysses radio data obtained during the first pole-to-pole fast latitude scan in the high-speed solar wind, using a kappa function to describe the electron velocity distribution. We deduce the variations with heliocentric distance between 1.5 and 2.3 AU in the fast solar wind at high latitude in terms of three fitting parameters: the electron density varies as n e??R ?1.96±0.08, the electron temperature as T e??R ?0.53±0.15, and the kappa index of the distribution remains constant at ??=2.0±0.2. These observations agree with the predictions of the exospheric theory.  相似文献   

19.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

20.
A laboratory plasma experiment has been built to study the eruption of arched magnetic flux ropes (AMFRs) in the presence of a large magnetized plasma. This experiment simulates the eruption of solar AMFRs in two essential steps: i) it produces an AMFR (n=6.0×1012 cm?3, $T_{\rm e} = 14~\mathrm{eV}$ , B≈1 kilo-gauss, L=0.51 m) with a persistent appearance that lasts several Alfvén transit times using a lanthanum hexaboride (LaB6) plasma source, and ii) it generates controlled plasma flows from the footpoints of the AMFR using laser beams. An additional LaB6 plasma source generates a large magnetized plasma in the background. The laser-generated flows trigger the eruption by injecting dense plasma and magnetic flux into the AMFR. The experiment is highly reproducible and runs continuously with a 0.5 Hz repetition rate; hence, several thousand identical loop eruptions are routinely generated and their spatio-temporal evolution is recorded in three-dimensions using computer-controlled movable probes. Measurements demonstrate striking similarities between the erupting laboratory and solar arched magnetic flux ropes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号