首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The UK Met Office has introduced a new scheme for its urban tile in MOSES 2.2 (Met Office Surface Exchange Scheme version 2.2), which is currently implemented within the operational Met Office weather forecasting model. Here, the performance of the urban tile is evaluated in two urban areas: the historic core of downtown Mexico City and a light industrial site in Vancouver, Canada. The sites differ in terms of building structures and mean building heights. In both cases vegetation cover is less than 5%. The evaluation is based on surface energy balance flux measurements conducted at approximately the blending height, which is the location where the surface scheme passes flux data into the atmospheric model. At both sites, MOSES 2.2 correctly simulates the net radiation, but there are discrepancies in the partitioning of turbulent and storage heat fluxes between predicted and observed values. Of the turbulent fluxes, latent heat fluxes were underpredicted by about one order of magnitude. Multiple model runs revealed MOSES 2.2 to be sensitive to changes in the canopy heat storage and in the ratio between the aerodynamic roughness length and that for heat transfer (temperature). Model performance was optimum with heat capacity values smaller than those generally considered for these sites. The results suggest that the current scheme is probably too simple, and that improvements may be obtained by increasing the complexity of the model.  相似文献   

2.
Data from several cases of radiation fog occurring at the Met Office field site at Cardington, Bedfordshire, UK have been analyzed with a view to elucidating the typical evolution in its static stability from formation to dissipation. Typically the early stages of radiation fog are characterized by a stable thermal profile and a relatively shallow depth. However, when the fog reached approximately 100 m depth it was observed to become optically thick (to longwave radiation), with a subsequent change over several hours to a saturated adiabatic stability profile. At this time turbulence levels were seen to increase significantly. The mechanisms involved appear to be radiative cooling from fog top and a positive heat flux to the atmosphere from the soil. The importance of this change in stability for numerical modelling of fog episodes is discussed. Several case studies are made to gain some insight into how common this transition is. Droplet spectra were measured at 2-m height for many of the cases considered, and their evolution is discussed. It is found that distributions fall into an initial phase with small drop sizes (approximately ≤ 10 μm diameter) and concentration, and a mature phase with the appearance of much larger drop sizes with a mean diameter of approximately 15−20 μm. It is found that the appearance of the mature phase does not coincide with the change in stability from stable to saturated adiabatic, but there is some evidence that once a saturated adiabatic profile is established, the droplet spectra variations are significantly less than for the stable period. The observed evolution of these spectra brings into question the suitability of microphysical schemes that assume constant spectral shape, drop diameter, and number density.  相似文献   

3.
Meteorological measurements were carried out at North Chennai semi rural area during pre-monsoon period as a part of an air quality study program. Analysis of the data showed the effects of coastal terrain namely the land-sea breeze circulation, temperature cooling during the sea breeze, difference in onset times at these sites etc. Sea breeze onset was observed with a sharp turning of the wind from westerly to south easterly associated with rise in wind speed. Advection speed of the front was about 2.0 m s− 1. A simple mesoscale meteorological model (MAM-I) developed at Kalpakkam for coastal atmospheric dispersion estimation was used to simulate the observed characteristics. All the major features observed could be simulated by the model while significant difference was noticed in sea breeze frontal movement. MAM results were also inter-compared with MM5. There were no significant differences in the estimate of mean parameters by both the models. It is concluded that the simple model, which takes less run time in a desktop PC, is adequate enough for practical application of providing wind field for plume dispersion models at coastal sites.  相似文献   

4.
《Atmospheric Research》2009,91(2-4):287-302
Organic and elemental carbon (OC and EC) content in PM10 was studied at two sites in Prague, which were located in a suburb and in the downtown. Similar overall average levels were found for both species and also for the PM10 mass at the two sites (i.e., 5.5 and 4.8 μg/m3 for OC, 0.74 and 0.80 μg/m3 for EC, and 33 μg/m3 and 37 μg/m3 for the PM10 mass at the suburb and downtown site, respectively), but substantial differences were observed between the two sites in some seasons and/or meteorological situations. Approximately three times higher values were found for OC in winter compared to summer, with a higher winter/summer ratio for the suburban site. The differences for EC were smaller, but still, compared to summer, more than two times higher EC levels were observed during autumn at the suburban site and 1.5 higher EC levels in winter and autumn at the downtown site. The lowest OC to EC ratios at the suburban site were 3.4, while they were around 1.3 for the downtown site. It was found that the origin of the air masses had a major impact on the observed PM10 mass and OC levels, with largest concentrations noted for air masses recirculating over central Europe and arriving from southeastern Europe in winter. Trajectories coming from the west and northwest originating above the Atlantic Ocean and the Artic brought the cleanest air masses to the sites. For EC the largest difference between the two sites was observed for northwesterly winds during the non-heating season when the suburban site was upwind of Prague.  相似文献   

5.
《Atmospheric Research》2005,73(1-2):1-22
We compare the characteristics of dew at nearly the same latitude (42–45°N) for the Mediterranean island of Corsica (Ajaccio, France) and two continental locations (Bordeaux, France, Atlantic coastal area; Grenoble, France, alpine valley). Dew amount was measured on a horizontal reference plate made of polymethylmethacrylate (PMMA) and placed at 1 m above the ground. Data are correlated with plate and air temperature, air relative humidity, wind speed and cloud cover during the period from 14-08-1999 to 15-01-2003.General features as well as particularities of the sampling sites are discussed. The average daily dew yield is higher for the island station at Ajaccio (0.070 mm) than the Bordeaux coastal area (0.046 mm) or the Grenoble valley (0.036 mm). However, the accumulated dew yield was highest for the coastal station (9.8 mm/year) as compared to the island (8.4 mm/year), and much larger than in the alpine valley (4 mm/year). The difference between cumulated and average dew yield stems from the greater number of dew days in the coastal area (58%) versus 33% for the island and 30% in the valley. The higher wind speeds at the island station (average wind during dew is 2 m/s) and lower relative humidity explain the smaller number of dew days. The dew rate seasonal variation is negligible in Bordeaux and exhibits during summer a maximum in Ajaccio and a minimum in Grenoble.A computer model that includes simple meteorological data (air temperature and relative humidity, wind speed, cloud cover) is used to determine the thermal balance and fit to dew mass evolution. Two parameters that account for heat and mass exchange can be adjusted. It was found that, within the uncertainties, these two numbers are the same for the two continental sites, thus allowing dew formation on plates to be evaluated from only simple meteorological measurements. Somewhat larger values are found for the island, due to limitations in the model, which are discussed.  相似文献   

6.
We explore the ability of a simple urban surface parametrization, embedded in a mesoscale meteorological model, to correctly reproduce observed values of the urban heat island (UHI) intensity, which is defined as the urban-rural surface air temperature difference. To do so, a simple urban scheme was incorporated into the Advanced Regional Prediction System (ARPS). Subsequently, a simulation was performed with the coupled model over the wider area of Paris, for a 12-day period in June 2006 that was characterised by conditions prone to UHI development. Simulated 2-m air temperature was compared with observed values for urban and rural stations, yielding mean errors of 1.4 and 1.5 K, respectively. More importantly, it was found that the model also displayed an overall good capability of reproducing the observed temperature differences. In particular, the magnitude (up to 6 K) and timing of the diurnal cycle of the UHI intensity was simulated well, the model exhibiting a mean error of 1.15 K. As a result, our conclusion is that the ARPS model, extended with simple urban surface physics, is able to capture observed urban-rural air temperature differences well, at least for the domain and period studied.  相似文献   

7.
One year of observations from a network of five 915-MHz boundary-layer radar wind profilers equipped with radio acoustic sounding systems located in California’s Central Valley are used to investigate the annual variability of convective boundary-layer depth and its correlation to meteorological parameters and conditions. Results from the analysis show that at four of the sites, the boundary-layer height reaches its maximum in the late-spring months then surprisingly decreases during the summer months, with mean July depths almost identical to those for December. The temporal decrease in boundary-layer depth, as well as its spatial variation, is found to be consistent with the nocturnal low-level lapse rate observed at each site. Multiple forcing mechanisms that could explain the unexpected seasonal behaviour of boundary-layer depth are investigated, including solar radiation, precipitation, boundary-layer mesoscale convergence, low-level cold-air advection, local surface characteristics and irrigation patterns and synoptic-scale subsidence. Variations in solar radiation, precipitation and synoptic-scale subsidence do not explain the shallow summertime convective boundary-layer depths observed. Topographically forced cold-air advection and local land-use characteristics can help explain the shallow CBL depths at the four sites, while topographically forced low-level convergence helps maintain larger CBL depths at the fifth site near the southern end of the valley.  相似文献   

8.
Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 μg m−3) is significantly higher than the concentrations (0.004–0.34 μg m−3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a 'leaking wall', whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 μg m−3) in a time scale of a few days. The analysis of the variability suggests that the “leaking wall” effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.  相似文献   

9.
We examine the efficacy of two methods commonly used to estimate the vertical turbulent fluxes of momentum and sensible heat from routinely observed mean quantities in the surface layer under stable stratification. The single-level method uses mean wind speed and temperature measurements at a single height, whereas the two-level method uses mean wind speed measurements at a single height and mean temperature measurements at two heights. These methods are used in popular meteorological processors such as the U.S. Environmental Protection Agency approved AERMET and CALMET to generate inputs for dispersion simulations. We use data from a flux station of the U.K. Met Office at Cardington for comparison. It is found that the single-level method does not describe the flux variation in the weakly stable regime at all, because of its assumption that the temperature scale, i.e. the ratio of the kinematic sensible heat flux to the friction velocity, is constant, which is plausible only under strongly stable conditions. On the other hand, the two-level method provides a physically realistic variation of the fluxes with stability, but the required temperature measurements at two levels are usually not available on a routine basis. If measurements of the standard deviation of temperature are also available, in addition to the mean temperature at a single level, then they can be usefully employed in a third (single-level) method, with the consequence that the computed fluxes are very similar to those obtained from the two-level method. An improvement to the original single-level method is considered, and flux calculations under low wind conditions are also discussed.  相似文献   

10.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   

11.
Low or weak wind-speed conditions, roughly defined as the periods when the mean wind speed at 10 m above the ground is 2 ms−1 or less, are of considerable practical interest. However, they are not readily amenable to treatment within prognostic meteorological models and, consequently, difficult to predict, especially when the ambient stability is strong. In this paper, we apply an Eε prognostic meteorological model to simulate near-surface meteorology and, focusing on low wind speeds, compare the predictions with measurements from two independent datasets. A sensitivity analysis is performed to investigate the possible reasons for the relatively inferior model performance for low winds when the atmosphere is stably stratified. A comprehensive data analysis is carried out to study low wind stable conditions, concentrating on the validity of various forms of flux–gradient relationships for momentum and heat within the framework of the Monin-Obukhov similarity theory, which models employ for calculating surface fluxes. The observed behaviour of various stability parameters, such as the Richardson number, is investigated. The results point to inadequacies of the current flux–gradient relationships, especially regarding momentum, under strongly stable conditions as being a dominant reason for the poor low wind predictions. The modelling issues identified are not just restricted to the present model, but are general in nature. The use of an alternative stability function for momentum under strongly stable conditions is explored. It results in improved model performance for low winds; however, further research is needed to better understand strongly stable flows in the lower atmosphere and to develop methods that can translate that understanding to operational meteorological modelling.  相似文献   

12.
This study conducted meteorological simulations in northern Colombia by analyzing different planetary boundary layer (PBL) schemes available in the numerical Weather Research and Forecasting (WRF) model. The study area included three nested domains with horizontal resolutions of 18 km, 6 km, and 2 km, with 38 vertical levels. The evolution and structure of the PBL were analyzed during the driest months (March, April, and May 2016) and in regions with the highest particulate matter concentrations. Sensitivity analysis of the WRF model was performed with two local and two non-local PBL schemes. The results were validated using observations of the surface air temperature, relative humidity, and surface wind speed collected from three meteorological stations in the area. The PBL heights were experimentally determined using radiosonde data provided by a station located in the center of the study area. Variations in PBL heights were estimated using linear regression methods and minimization of statistical errors for the bulk Richardson number, as well as analysis of vertical temperature and wind profiles. The WRF model reliably reproduced the daily values and diurnal cycles of temperature, relative humidity, and wind speed within the PBL and accounted for the influence of topography and sea breezes. Horizontal heat advection dominates the upwelling of air masses when sea breezes are active. The onshore wind direction starts to change from east to northwest, implying a decay in the land breeze regime. All schemes overestimate the mixing height and tend to underestimate surface air temperature values at night. All show wetter conditions and underestimate wind speed. Although the non-local Yonsei University (YSU) scheme shows the best performance, it also shows the largest sources of errors when determining the behavior of the surface layer during stable conditions. Relative humidity and wind speed estimates provided by the local Mellor‐Yamada‐Nakanishi‐Niino (MYNN) scheme were closer to those recorded at the meteorological stations.  相似文献   

13.
Data are used from the Met Office tethered balloon facility to examine the evolution of boundary layer humidity probability density functions during various meteorological conditions. Results typically show significant changes in all four moments (mean, standard deviation, skewness and kurtosis) over periods from one to several hours. Boundary layers experiencing the greatest changes were normally convective in nature. In contrast, a quiescent wintertime boundary layer was seen to show very little evolution over a period of two days. Models which use statistical distributions of humidity for cloud prediction should ideally be able to reproduce these observations.  相似文献   

14.
In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere–waves–ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave–current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave–current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.  相似文献   

15.
The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter. Of particular importance is the influence of terrain-induced shallow foehn, known locally as elevated southeasterly gale(ESEG). It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution. During 2013–17, Urumqi had an average of 50 d yr–1...  相似文献   

16.
Organic and elemental carbon (OC and EC) content in PM10 was studied at two sites in Prague, which were located in a suburb and in the downtown. Similar overall average levels were found for both species and also for the PM10 mass at the two sites (i.e., 5.5 and 4.8 μg/m3 for OC, 0.74 and 0.80 μg/m3 for EC, and 33 μg/m3 and 37 μg/m3 for the PM10 mass at the suburb and downtown site, respectively), but substantial differences were observed between the two sites in some seasons and/or meteorological situations. Approximately three times higher values were found for OC in winter compared to summer, with a higher winter/summer ratio for the suburban site. The differences for EC were smaller, but still, compared to summer, more than two times higher EC levels were observed during autumn at the suburban site and 1.5 higher EC levels in winter and autumn at the downtown site. The lowest OC to EC ratios at the suburban site were 3.4, while they were around 1.3 for the downtown site. It was found that the origin of the air masses had a major impact on the observed PM10 mass and OC levels, with largest concentrations noted for air masses recirculating over central Europe and arriving from southeastern Europe in winter. Trajectories coming from the west and northwest originating above the Atlantic Ocean and the Artic brought the cleanest air masses to the sites. For EC the largest difference between the two sites was observed for northwesterly winds during the non-heating season when the suburban site was upwind of Prague.  相似文献   

17.
18.
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space–time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt–Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.  相似文献   

19.
Summary  Long time series of daily meteorological data that are needed in various applications are not always available or appropriate for use at many locations. The Weather Generation Model (WGEN) developed by Richardson and Wright (1984) was evaluated as a substitute for daily observed data at 17 sites located in the main climatic zones of Nigeria. The Wilcoxon-Mann-Whitney U-test has shown that the number of months per year, for which the differences between the long-term monthly mean observed meteorological and WGEN simulated data, were significant, was less than 4 at most of the study sites. Received July 10, 1996 Revised September 11, 1998  相似文献   

20.
Ozone episodes (> 100 ppbv) were observed frequently in Jinan, an urban site located between the highly polluted Yangtze Delta and Beijing–Tianjin region in East China. In this study, the ozone episodes observed in 2004 were analysed using the Hybrid Single-particle Lagrangian Integrated Trajectory (HYSPLIT) model and surface meteorological data, as well as Air Pollution Index (API). The meteorological conditions of episode days and non-episode days were compared and examined, and categorization of 6 groups of backward trajectories was performed. The results show that, most episodes were caused by local photochemical production (e.g., induced by sufficient sunshine duration and high temperature) and pollutant accumulation (e.g., induced by little rainfall and low wind speed), and transport of pollutants from the highly polluted regions could significantly influence the air quality at the site, especially from Yangtze Delta region. In addition, three typical ozone episodes were analysed using HYSPLIT model to infer any long-distance transport and surface meteorological data to infer the local ozone production potential. At last, the functions and inadequacies about the usage of HYSPLIT model combined with surface meteorological data for the analysis of photochemical pollution were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号