首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field and petrographic investigations of Holocene evaporites in the Ras El Shetan area, Gulf of Aqaba, Egypt, indicate the presence of microbial mats either in the form of laminites or stromatolites. The morphology of microbial mats and gypsum crystal size characterize the following lithofacies: (1) slump-stromatolitic gypsarenite, (2) random gypsrudite, (3) stromatolitic gypsarenite, and (4) microbially laminated gypsrudite. These evaporite lithofacies are formed above pre-evaporitic mudstones rich in disrupted cyanobacterial filaments, burrows and cerithid gastropods. The morphology of the gypsum crystals is mainly lenticular, indicating enrichment of dissolved organic compounds in the depositional environment. The difference in size of the lenticular gypsum crystals is related to minor changes in salinity and temperature of the parent brine. Fluid inclusions in gypsum crystals indicate their formation at low temperature (<50°C) in a seawater sourced brine that evaporated to gypsum saturation or higher. The brine salinities range from 10·62 to 12·99 equivalent wt% NaCl, and the brine densities range from 1·08 to 1·11 g/cm3. The change in morphology of the microbial mats (stromatolites and laminites) is related mainly to changes in water depth, from a very shallow salina to a coastal sabkha. Lenticular gypsum nucleated displacively in the microbial mats from saline, oxygenated groundwater that seeped from the sea through a barrier.  相似文献   

2.
Well-preserved siliciclastic domal stromatolites, up to 2 m wide and 1·5 m high, are found in a 10 to 15 m thick interval within the Late Ordovician Eureka Quartzite of Southern Nevada and Eastern California, USA. These stromatolites appear as either isolated features or patchy clusters that contain more than 70% by volume quartz grains; their association with planar, trough and herringbone cross-bedding suggests that they were formed in an upper shoreface environment with high hydraulic energy. In this environment, sand bars or dunes may have provided localized shelter for initial microbial mat colonization. Biostabilization and early lithification of microbial mats effectively prevented erosion during tidal flushing and storm surges, and the prevalence of translucent quartz sand grains permitted light penetration into the sediment, leading to thick microbial mat accretion and the formation of domal stromatolites. Decimetre-scale to metre-scale stromatolite domes may have served as localized shelter and nucleation sites for further microbial mat colonization, forming patchy stromatolite clusters. Enrichment of iron minerals, including pyrite and hematite, within dark internal laminae of the stromatolites indicates anaerobic mineralization of microbial mats. The occurrence of stromatolites in the Eureka Quartzite provides an example of microbial growth in highly stressed, siliciclastic sedimentary environments, in which microbial communities may have been able to create microenvironments promoting early cementation/lithification essential for the growth and preservation of siliciclastic stromatolites.  相似文献   

3.
The mode of formation and environmental setting of stromatolites from the lower Missoula Group (ca. 1.1·109 years old) in Glacier National Park, Montana, have been determined. The stromatolite-bearing interval in the lower Missoula Group was deposited in a shallow, intermittently exposed setting of very low relief, the stromatolites forming during periods of submergence. In situ carbonate precipitation was the dominant process involved in the formation of encrusting stromatolitic laminae. This precipitate was deposited within, and probably beneath, algal mats, most likely as a result of the photosynthetic removal of carbon dioxide by the mat-building microscopic algae. Calcite also was precipitated in several types of open-space structures occurring within these stromatolites. Other laminae were produced by the organic stabilization of detrital particles; by the solely physical accumulation of terrigenous material; and probably, by bacterially induced precipitation of iron sulfide which was later oxidized to form hematite layers.Three forms of filamentous microfossils, two of which appear to be oscillatoriacean cyanophytes and the third of which is probably either a cyanophyte or filamentous bacterium, have been detected in these structures. In addition, hematitic pillar-shaped microstructures, interpreted to have been produced by filamentous bacteria, are abundant locally.In gross morphology, the lower Missoula Group stromatolites are simple, unbranched, domal structures ranging from several millimeters to several decimeters in both height and diameter. Physical conditions played a major role in determining the macrostructure of these stromatolites. Of particular importance were the shape of the positive sediment-surface irregularities upon which the stromatolites initially formed, the rate of sedimentation between stromatolite colonies, and the deposition of layers of terrigenous material on stromatolite growth surfaces. The effect of biological factors on stromatolite structure is clearly seen in those portions of stromatolites relatively free of terrigenous material; biological activity was apparently greatest on positive irregularities of the growth surface, resulting in preferential enhancement of such irregularities and development of second- and higher-order hemispheroidal structures.  相似文献   

4.
The Mesoproterozoic Tieling Formation, near Jixian, northern China, contains thick beds of vertically branched, laterally elongate, columnar stromatolites. Carbonate mud is the primary component of both the stromatolites and their intervening matrix. Mud abundance is attributed to water column ‘whiting’ precipitation stimulated by cyanobacterial photosynthesis. Neomorphic microspar gives the stromatolites a ‘streaky’ microfabric and small mud flakes are common in the matrix. The columns consist of low‐relief, mainly non‐enveloping, laminae that show erosive truncation and well‐defined repetitive lamination. In plan view, the columns form disjunct elongate ridges <10 cm wide separated by narrow matrix‐filled runnels. The stromatolite surfaces were initially cohesive, rather than rigid, and prone to scour, and are interpreted as current aligned microbial mats that trapped carbonate mud. The pervasive ridge–runnel system suggests scale‐dependent biophysical feedback between: (i) carbonate mud supply; (ii) current duration, strength and direction; and (iii) growth and trapping by prolific mat growth. Together, these factors determined the size, morphology and arrangement of the stromatolite columns and their laminae, as well as their branching patterns, alignment and ridge–runnel spacing. Ridge–runnel surfaces resemble ripple mark patterns, but whether currents were parallel and/or normal to stromatolite alignment remains unclear. The formation and preservation of Tieling columns required plentiful supply of carbonate mud, mat‐building microbes well‐adapted to cope with this abundant sediment, and absence of both significant early lithification and bioturbation. These factors were time limited, and Tieling stromatolites closely resemble coeval examples in the Belt‐Purcell Supergroup of Laurentia. The dynamic interactions between mat growth, currents and sediment supply that determined the shape of Tieling columns contributed to the morphotypical diversity that characterizes mid–late Proterozoic branched stromatolites.  相似文献   

5.
The Mississippian (Early Carboniferous) is generally a period of scarce carbonate buildups in South China. This study documents outcrops of stromatolite mounds at Mengcun and Helv villages, in Laibin City, Guangxi Province, South China. The stromatolite mounds contain various stromatolite morphologies including laminar, wavy-laminar, domal or hemispheroidal, bulbous, and flabellate-growth columns. Intramound rocks are brachiopod floatstone and dark thin-bedded laminated micrite limestone. Individual stromatolites at Mengcun village are generally 3–6 cm thick and morphologically represent relatively shallow-water laminar (planar and wavy-undulated stromatolites) and deeper-water domal, bulbous and columnar forms. Where mounds were formed, the stromatolites continued growing upward up to 60 cm thick. Thrombolitic fabrics also occur but are not common. Stromatolite microscopic structure shows the bulk of the lamination to consist of wavy microbialite and discrete thin micritic laminae. These mounds are intercalated in deep-water fore-reef talus breccia, packstone formed as a bioclastic debris flow and thin-bedded limestone containing common chert layers of the Tatang Formation (late Viséan). Further evidence supporting the deep-water setting of the stromatolite mounds are: (1) a laterally thinning horizon of brachiopod floatstone containing deep-water, small, thin-shelled brachiopods, peloidal micritic sediments and low-diversity, mixed fauna (e.g., thin-shelled brachiopods, tube-like worms and algae) that have been interpreted as storm deposits, (2) common fore-reef talus breccias, (3) lack of sedimentary structures indicating current action, (4) preservation of lamination with sponge spicules, and (5) lack of bioturbation suggesting that the stromatolites grew in a relatively low energy, deep-water setting. The stromatolite mounds are the first described stromatolite mounds in Mississippian strata of South China and contain evidence that supports interpretations of (1) growth history of Mississippian microbial buildups and (2) environmental controls on stromatolite growth and lithification.  相似文献   

6.
Microbial dolomite crusts from the carbonate platform off western India   总被引:1,自引:1,他引:1  
Abstract The occurrence of Late Pleistocene dolomite crusts that occur at 64 m depth on the carbonate platform off western India is documented. Dolomite is the most predominant mineral in the crusts. In thin section, the crust consists of dolomitized microlaminae interspersed with detrital particles. Under scanning electron microscopy, these laminae are made up of tubular filaments or cellular structures of probable cyanobacterial origin. Dolomite crystals encrust or overgrow the surfaces of the microbial filaments and/or cells; progressive mineralization obliterates their morphology. Well-preserved microbial mats, sulphide minerals (pyrrhotite and marcasite) and the stable isotope composition of dolomite in the crusts indicate hypersaline and anoxic conditions during dolomite formation. The crusts are similar to dolomite stromatolites, and biogeochemical processes related to decaying microbial mats under anoxic conditions probably played an important role in dolomite precipitation. The dolomite is therefore primary and/or very early diagenetic in origin. The dolomite crusts are interpreted to be a composite of microbial dolomite overprinted by early burial organic dolomite. The results of this study suggest that a microbial model for dolomite formation may be relevant for the origin of ancient massive dolomites in marine successions characterized by cryptalgal laminites. The age of the crusts further suggests that the platform was situated at shallow subtidal depths during the Last Glacial Maximum.  相似文献   

7.
Formation of microlaminated sediments in solar salt works along the Mediterranean coast in southern France only occurs within a restricted salinity range of 60–150 gl?1. These salinities are associated with development of a laminated cyanobacterial mat composed primarily of the filamentous cyanobacteria Microcoleus chthonoplastes interbedded with detrital laminae. Transplants of the cyanobacterial mat to a less saline zone (36–60 gl?1) indicated that the cyanobacterial mats failed to colonize the less saline waters due to herbivorous snails and competition for light from floating algal masses of Cladophora and Enteromorpha. Neither the snails nor the Cladophora and Enteromorpha masses are tolerant of salinities above 60 gl?1, and therefore the Microcoleus mats are restricted to those areas of the solar salt works with these higher salinities. Analyses of salinity, conductivity, dissolved oxygen and pH in shallow salt pans (with salinities of 60–150 gl?1) established a relationship between the daily development of oxygen supersaturation and cyanobacterial photosynthesis. Sediments are unlaminated in those portions of the solar salt works where there are no cyanobacterial mats. These mats are frequently drained of their overlying water, and thus desiccation cracks divide them into polygonal plates. The development and translocation of these plates is enhanced by gas bubbles which form under the surface of the mats. No correlation between the microlaminae in sections from two cores located approximately 1 m apart was observed. This was consistent with the hypothesis that the surface of the desiccation crack polygons can be removed by currents and redeposited on the top of other cyanobacterial mat polygons. This process results in a ‘patchwork quilt’of young and old cyanobacterial mat polygons with an irregular microlamination pattern. The presence of such an irregular pattern of laminae permits an important distinction to be made between sediments associated with stromatolite formation and those associated with the very fine and horizontal varved sediments of stratified (meromictic) water bodies. The sedimentological significance of these observations is reviewed in relation to the processes of stromatolite genesis.  相似文献   

8.
Variations of carbon and oxygen isotopic ratios in response to cyclical sea level fluctuations have been documented from a Paleoproterozoic peritidal stromatolite succession. The upper division of the Kajrahat Limestone, Vindhyan Supergroup of central India consists of several shallowing upward stromatolite cycles identified by regular and systematic changes in stromatolite size. Normally, larger stromatolites are followed upward in the succession by smaller stromatolites and microbial laminites that occupy the top of the cycle. Desiccation cracks are found in all the facies indicating subaerial exposure. We investigated the stable isotope compositional variations across nine complete stromatolite cycles showing frequent subaerial emergence. Carbon and oxygen isotopic values of the limestones, in general, are comparable to contemporary marine values available from earlier studies but show regular depletion in response to shallowing of the water level. The δ13C and δ18O values of the limestones vary within an individual stromatolite cycle; depleted values characterize the topmost part of the cycles. The isotope pattern is explained by micritic carbonate deposition in different sub environments of the shallow marine domain having different salinity and variable duration of exposure. These variations also probably caused the observed scatter in δ13C and δ18O values of supratidal microbial laminites.  相似文献   

9.
Despite extensive research, the environmental and temporal significance of microbial lamination is still ambiguous because of the complexity of the parameters that control its development. A 13 year monitored record of modern fast‐accreting calcite stromatolites (mean 14 mm year?1) from artificial substrates installed in rapid flow in the River Piedra (north‐east Spain) allows comparison of the sedimentological attributes of successive six‐month depositional packages with the known climatic, hydrophysical and hydrochemical parameters of the depositional system. The stromatolites are formed of dense, porous and macrocrystalline composite laminae. The dense and porous composite laminae, which are composed of two to eight laminae consisting largely of calcified cyanobacteria, are characterized by: (i) dense composite laminae, up to 15 mm thick, mostly with successive dense laminae and minor alternating dense and porous laminae; and (ii) porous composite laminae, up to 12 mm thick, consisting mainly of porous laminae alternating with thinner dense laminae. Most of the dense composite laminae formed during the warm periods (April to September), whereas most of the porous composite laminae developed in the cool periods (October to March). Each dense and porous composite lamina represents up to or slightly longer than six months. The alternation of these two types of composite laminae parallels seasonal changes in temperature. The dense and porous laminae result from shorter (for example, intraseasonal) variations in temperature, insolation and hydrological conditions. The macrocrystalline laminae, with crystals >100 μm long, occur isolated and grouped into composite laminae up to 1·7 mm thick. Their occurrence suggests the absence or poor development of microbial mats over periods of weeks to several months. Thus, stromatolite lamination can record different‐order, periodic and non‐periodic changes in the magnitude of environmental parameters over a single year. These results hold important implications for the temporal and environmental interpretation of lamination in microbial structures.  相似文献   

10.
作为微生物席建造物的叠层石记录了大量的古环境和古地理信息,在豫西寒武系出露18层叠层石,以宏观和微观沉积特征为基础,依据各组段叠层石丰度(层厚度)和分异度(形态类型)的演化,将豫西寒武纪叠层石划分为6个演化组合。从叠层石组合的微观纹层、微生物化石及其微生物席演化等方面,结合沉积学和生物化石特征,探讨了豫西寒武纪叠层石的幕式演化,分别为微生物岩-叠层石演化幕和微生物岩-灰岩演化幕。以中寒武世灰岩中微生物岩与遗迹化石的密度关系为例,并从整个寒武纪微生物岩与后生动物化石之间关系的角度分析,认为叠层石微生物岩演化与后生动物之间并非只是简单的“此消彼长”,而是一种动态平衡的耦合关系。  相似文献   

11.
河北承德路通沟剖面芙蓉统凤山组中部发育厚层块状叠层石生物丘,构成一个淹没不整合型层序的强迫型海退体系域,指示这些叠层石形成于中高能浅海环境。该生物丘宏观上主要由柱状叠层石组成,叠层石内部纹层较粗糙,在构成叠层石的致密泥晶和微亮晶组构中,还见到球粒、底栖鲕粒及凝聚颗粒等多种生物成因颗粒类型,代表着复杂的微生物活动特征,以此而区别于前寒武纪的叠层石。更为重要的是,叠层石生物丘中的致密泥晶基质中发育一些“石松藻(Lithocodium)”状的钙化蓝细菌菌落残余物,以及一些丝状钙化蓝细菌化石,指示了形成叠层石的微生物席为蓝细菌所主导的微生物席。因此,凤山组叠层石生物丘内复杂而特殊的碳酸盐岩沉积组构为研究叠层石形成过程中复杂的微生物代谢活动所产生的钙化作用机制提供了一个宝贵的地质实例。  相似文献   

12.
Many euhedral dolomite crystals and related pores are found in the microbial siliceous stromatolite dolomite and siliceous oolitic dolomite in the Fengjiawan Formation of the Mesoproterozoic Jixian System in the southern Ordos Basin. With the application of the microscope, scanning electron microscope, cathodoluminescence and in-situ trace element imaging, it can be seen that different from the phase I dolomite that was damaged by silicification, the intact euhedral phase II dolomite occurred through dolomitization after silicification, concentrated mainly in the organic-rich dark laminae of the stromatolite and the dark spheres and cores of the ooids. A considerable number of phase II dolomite crystals were dissolved, giving rise to mold pores and vugs which constituted the matrix pores and also the major pore space of the Fengjiawan Formation. The formation and dissolution of the dolomite were controlled by the microenvironment favorable, respectively, for carbonate precipitation and dissolution under the influence of microbial biological activities and related biochemical reactions. The driving force and material supply of dolomitization and dissolution were confined to the fabrics enriched with microorganisms, which are highly autochthonous. This mechanism may be a key factor for the development of Precambrian dolomite and related reservoirs, in the context of the domination of microbial rocks.  相似文献   

13.
Silurian pinnacle reefs in the subsurface of the south‐western Ontario portion of the Michigan Basin display a variety of laminated carbonates (laminites) within predominantly muddy reef‐capping facies in the upper part of the Guelph Formation and the overlying A‐1 Carbonate of the Salina Group. Laminites, which are limestone, dolomite or partially dolomitized limestones, have a range of morphologies, from simple planar to a variety of wavy and serrated forms. Individual laminae are composed mainly of micrite, microspar or replacive dolomite, and vary internally from isopachous and continuous over the diameter of the core to non‐isopachous and often discontinuous. Clotted and peloidal micrite, sometimes defining small knobs and chambers, is interpreted as being microbial in origin and occurs within all types of laminites. Fibrous cement locally comprises laminite clasts in breccias or coats clasts in breccias, and also occurs as spherulites in the interparticle spaces in breccias. Although similar laminites have been described from elsewhere in the Michigan Basin and interpreted as caliche, travertine and abiotic subtidal stromatolites, the laminites in south‐western Ontario are most realistically regarded as microbial. The causes for the variations in morphology and characteristics of the constituent laminae are uncertain, although fluctuations in local microenvironmental conditions would have been important, set against a backdrop of an increasingly restricted overall setting. Caliche or travertine origins for these laminites are unlikely in general, except perhaps locally at the subaerial exposure surface at the tops of pinnacle reefs.  相似文献   

14.
川黔地区地表钙华中发现现代淡水叠层石及藻席   总被引:13,自引:0,他引:13  
田友萍  何复胜 《地质论评》2000,46(5):549-555
笔者通过对四川九寨沟、贵州黄果树、马岭河峡谷以及香纸沟的地表钙华的考查和研究,首次在地表钙华体中发现现代淡水叠层石及其藻席,并总结了研究区叠层石藻席的种类和特征,认为该研究区叠层石藻席中微生物群落的优势种主要属于蓝藻门中的裂须藻属(Schizothrix)、席藻属(Phormidium)和鞘丝藻属(Lyngbya)。该叠层石的形成是由于蓝藻藻席的新旧更迭以及沉积物的周期性沉积造成的;叠层石的纹层和  相似文献   

15.
自从Kalkowsky在1908年构筑了叠层石的术语之后,叠层石一直是地质学家采用不同方法研究和思考的主题,而且一直被当作证明地球早期生命历史的代表物而得到深入调查。叠层石确实为地球早期生命历史提供了间接而且复杂的证据,所以,现代叠层石确实代表着明显的生物信号而成为研究的焦点。最为引人注目的是,现代叠层石的多样化构成,确实表明了蓝细菌生物席建造了叠层石,而且进一步表明了微生物席转化成叠层石不是一个直接的作用过程。那些反映现代叠层石多样化构成的典型实例包括:(1)南极Untersee地区的湖泊相锥状泥质叠层石;(2)新西兰North群岛被称为煎锅湖的热水湖泊中以及美国黄石国家公园热泉中的硅质叠层石;(3)巴哈马台地、澳大利亚鲨鱼湾以及巴西东南部海湾碳酸盐沉积物构成的叠层石。由于蓝细菌微生物席是否代表了古代叠层石的形态学前体总是存在争议,而且在生命的图像中叠层石一直是一个迷惑的关键片段,因此,现代叠层石的多样化构成,将成为认识古代叠层石形成的关键和窗口。立足于前人的研究成果,追踪和总结现代叠层石的多样化构成,以及它们所代表的沉积作用和微生物新陈代谢活动丰富而复杂的信息,将不但丰富微生物沉积学的研究内容,还将拓宽沉积相分析的基本内容,对深入了解叠层石复杂的沉积学特征和生物学属性具有重要的科学意义。  相似文献   

16.
The significance of stromatolites as depositional environmental indicators and the underlying causes of lamination in the lacustrine realm are poorly understood. Stromatolites in a ca 600 m thick Miocene succession in the Ebro Basin are good candidates to shed light on these issues because they are intimately related to other lacustrine carbonate and sulphate facies, grew under variable environmental conditions and show distinct lamination patterns. These stromatolites are associated with wave‐related, clastic‐carbonate laminated limestones. Both facies consist of calcite and variable amounts of dolomite. Thin planar stromatolites (up to 10 cm thick and less than 6 m long) occurred in very shallow water. These stromatolites represented first biological colonization after: (i) subaerial exposure in the palustrine environment (i.e. at the beginning of deepening cycles); or (ii) erosion due to surge action, then coating very irregular surfaces on laminated limestones (i.e. through shallowing or deepening cycles). Sometimes they are associated with evaporative pumping. Stratiform stromatolites (10 to 30 cm high and tens of metres long) and domed stromatolites (10 to 30 cm high and long) developed in deeper settings, between the surge periods that produced hummocky cross‐stratification and horizontal lamination offshore. Changes in stromatolite lamina shape, and thus in the growth forms through time, can be attributed to changes in water depth, whereas variations in lamina continuity are linked to water energy and sediment supply. Growth of the stromatolites resulted from in situ calcite precipitation and capture of minor amounts of fine‐grained carbonate particles. Based on texture, four types of simple laminae are distinguished. The simple micrite and microsparite laminae can be grouped into light and dark composite laminae, which represent, respectively, high and low Precipitation/Evaporation ratio periods. Different lamination patterns provide new ideas for the interpretation of microbial laminations as a function of variations in climate‐dependent parameters (primarily the Precipitation/Evaporation ratio) over variable timescales.  相似文献   

17.
Non-columnar stromatolites occur in the late Precambrian Annijokka Member of the Båtsfjord Formation of the Varanger peninsula, north Norway. The stromatolites form biostromes up to 0.5 m thick embedded within peritidal, shallowing-up, siliciclastic-dolomite cycles. The stromatolite biostromes tend to occur in the upper, dolomite-rich portions of the cycles and are mostly calcite-dominated.Interpretation of the origin of the host sediments, combined with the location of the biostromes in the depositional sequences and with the contrasting mineralogy between the latter and the stromatolites, suggests that the majority of the stromatolite biostromes originated in freshwater and schizohaline supralittoral ponds.  相似文献   

18.
Stromatolite biostromes and bioherms in the lower two units of the Late Proterozoic Loves Creek Member of the Bitter Springs Formation represent shallowing upward and deepening upward sequences. In the central unit stromatolite form is governed by relative position in an asymmetric shallowing upward sequence. Ooid and/or peloid-intraclast grainstones and small, irregular bulbous and columnar stromatolites characterize the basal, transgressive portion of cycles. Domal, columnar and stratiform stromatolites comprise the bulk of the cycle. These forms accreted in a gradually shallowing epeiric sea. Domal stromatolites predominate in the deeper parts of cycles. Here synoptic relief gradually increases upwards. Columnar and stratiform stromatolites predominate in the shallower parts of cycles, where synoptic relief rapidly diminishes upwards. In thin-bedded dolo-mudstones at the tops of cycles the co-occurrence of desiccation cracks, tepee structures, scalloped dissolution surfaces, gypsum moulds and anhydrite nodule pseudomorphs provides evidence for subaerial exposure. In contrast, stromatolites in a unit at the base of the Loves Creek Member accreted during a gradual rise in sealevel. Stratiform, columnar and domal stromatolitic building blocks of the shallowing upward cycle are present in this deepening sequence, but only the lower half of the shallowing upward cycle is represented. Synoptic relief of the stromatolitic laminae gradually increases upward throughout the basal stromatolitic unit. Recognition of a deepening upward stromatolite sequence at the base of the Loves Creek Member, and a disconformity surface between this sequence and the underlying Gillen Member, permits palaeoenvironmental re-interpretation of the Loves Creek Member as a single ‘large scale’ sea-level cycle.  相似文献   

19.
20.
柴达木盆地中新世叠层石成因与古环境研究   总被引:3,自引:1,他引:3  
柴达木盆地西部干柴沟一带发育了大量湖相叠层石,主要存在于新近纪中新世地层中。柴西地区的叠层石形态各异,成因各具特点,而且部分叠层石与现代叠层石完全不同而是更类似于前寒武时期的对应物,根据国内外叠层石研究的最新成果和成因分类标准,柴西地区主要发育了骨架、凝集和细粒叠层石。对应于不同的分类标准其成因也各不相同,细粒叠层石的形成主要是通过微生物自身的钙化作用和生物膜上过饱和碳酸盐等物质以及微生物的引发的沉淀作用;凝集型叠层石的形成主要与原核生物和真核藻类共同发挥粘附作用有关;骨架型叠层石的形成主要是真核藻类等的钙化与原地碳酸盐的沉淀综合作用的结果。柴达木盆地频繁变化的湖相水体条件和周围的构造运动是叠层石形态多样,成因各异的主要外部和环境因素。对各类叠层石的深入细致研究将对沉积学和环境学的研究提供宝贯的现代对应物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号