首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
节理对爆炸波传播影响的数值研究   总被引:2,自引:0,他引:2  
采用加入无反射边界条件的DDA程序,研究了节理面对应力波传播的影响。结果表明,节理面能阻碍波的传播,有利于波的衰减,节理面越多,波的反射越强,而波的透射越弱。模拟了一个现场爆炸试验,研究爆炸产生的应力波在节理岩体中传播、衰减的规律,模拟结果与现场试验结果比较吻合。研究表明,DDA方法可以模拟节理面对应力波传播的阻碍作用,用它来模拟爆炸波在节理岩体中的传播是适用的。  相似文献   

2.
Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper’s framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.  相似文献   

3.
This paper presents a numerical simulation of S-wave propagation across a rough, filled discontinuity using the universal distinct element code (UDEC). The ability of UDEC to simulate a stress wave across a smooth and planar discontinuity filled with an elastic material is validated through comparisons with analytical solutions. Next, the effect of the plastic deformation of the fill on the wave propagation is investigated. The model is extended to further study S-wave propagation across a filled discontinuity with rough interfaces, which is described using a sawtooth. The transmission coefficient defined by the energy is used to measure the wave attenuation. Finally, a parametric study is conducted to investigate the influences of the filled thickness, asperity angle, and incident amplitude on the transmission waves and transmission coefficients. The asperity angle and filled thickness together determine the transmitted waveform and transmission coefficient. The transmitted wave may be cut off when the incident wave amplitude exceeds a threshold value. The transmission coefficient decreases with a different trend with the incident wave amplitude increasing when the asperity angle varies. Compared with planar discontinuity, a filled discontinuity with rough interfaces is more sensitive to the amplitude of the incident wave. The causes of these phenomena are analyzed in detail. In addition, the deformation of the fill material is strongly related to the wave attenuation.  相似文献   

4.
A validation study of the distinct lattice spring model (DLSM) for wave propagation problems is performed. DLSM is a microstructure-based numerical model, which is meshless and has advantages in modelling dynamic problems where stress wave propagation is important. To verify the applicability of DLSM to modelling wave propagation through a discontinuous medium, the virtual wave source (VWS) method is used to obtain analytical solutions for wave propagation across a jointed rock mass. Numerical modelling results of the commercial code UDEC are selected as the reference. The effects of particle size and lattice rotation angle on wave propagation are first studied. Then, the results of wave transmission across a single joint with a different joint stiffness and across multiple parallel joints with different joint spacings are derived with DLSM, UDEC and VWS. These results are in good agreement with each other. Therefore, the capability of DLSM to model P-wave propagation across jointed rock mass is verified, which provides confidence for the further application of DLSM to modelling more complex problems.  相似文献   

5.
舒进辉  马强  常立君 《岩土力学》2023,44(1):217-231
基于弹性波在非饱和多孔介质与单相弹性介质中的传播理论,考虑在非饱和土地基中设置一定厚度的复合多层波阻板(复合多层波阻板以3层为例),利用Helmholtz矢量分解定理,推导了非饱和土地基中S波通过复合多层波阻板的透射、反射振幅比的解析解。通过数值算例,分析了层间波阻板剪切模量和密度等物理力学参数对非饱和土地基中S波通过复合多层波阻板时传播特性的影响规律。结果表明:复合多层波阻板中层间波阻板材料的剪切模量和密度对透反射系数影响显著。复合多层波阻板是一种有效的隔振屏障,严格控制层间波阻板的剪切模量和密度可以获得最佳隔振效果,这为复合多层波阻板在地基振动控制领域中的应用提供理论指导。  相似文献   

6.
节理面透射模型及其隔振性能研究   总被引:3,自引:1,他引:2  
振动波入射到节理界面上,与软弱断层一样会产生波场的分解,能够起到隔振作用。根据线性变形节理的透反射规律研究发现,隔振后各点的波场可由透射P波与透射S波叠加而成,其能量分配服从Zoeppritz方程,不连续位移造成了透射波的衰减;法向刚度增加透射纵波系数会增加,而切向刚度与透射纵波无关,法向与切向刚度对透射S波均有影响,刚度增加透射S波振幅逐渐降低,逐步逼近于0;由于透射后波场相互干涉,不同波场延时不同,透射合成波与入射波相比,振幅降低,持续时间增加,波形尾段有畸变;总能量系数与节理面的刚度无关,而随入射角增加不断降低。  相似文献   

7.
Analysis of Blast Wave Interaction with a Rock Joint   总被引:8,自引:3,他引:5  
The interaction between rock joints and blast waves is crucial in rock engineering when rock mass is suffered from artificial or accidental explosions, bursts or weapon attacks. Based on the conservation of momentum at the wave fronts and the displacement discontinuity method, quantitative analysis for the interaction between obliquely incident P- or S-blast wave and a linear elastic rock joint is carried out in the present study, so as to deduce a wave propagation equation. For some special cases, such as normal or tangential incidence, rigid or weak joint, the analytical solution of the stress wave interaction with a rock joint is obtained by simplifying the wave propagation equation. By verification, it is found that the transmission and reflection coefficients from the wave propagation equation agree very well with the existing results. Parametric studies are then conducted to evaluate the effects of the joint stiffness and incident waves on wave transmission and reflection. The wave propagation equation derived in the present study can be straightforwardly extended for different incident waveforms and nonlinear rock joints to calculate the transmitted and reflected waves without mathematical methods such as the Fourier and inverse Fourier transforms.  相似文献   

8.
针对薄层及多波联合反演两大研究热点,以薄层频率域反、透射系数为基础,建立了两类薄煤层模型——强阻抗和低阻抗差异薄层,并对其分别进行单纯P波、S波及PP波与PS波联合反演。利用反演结果及误差分析,对比了单种波反演和联合反演的效果,从模型反演数据证实了对于薄层而言,PP波和PS波联合反演比P波或者S波单纯反演具有更好的效果。   相似文献   

9.
岩体工程计算分析中结构面刚度系数是至关重要的力学参数,计算分析的精度和可靠程度与这个参数密不可分,结构面刚度系数取值仍然是一个难点.岩体中应力波传播至结构面处将会发生反射和透射现象,利用应力波透射系数可反演结构面动态刚度系数.本文从细观力学角度运用颗粒离散元方法,开发分段线性接触模型及应力波吸收边界模型,开展宏观岩体中...  相似文献   

10.
The existence of joint fissures makes explosive actions between rock masses more complex. Therefore, it is of great significance to carry out experiments studying blasting stress waves propagating in jointed rock masses. Based on the Froude Similarity principle, the geological mechanical models of intact rock masses and jointed rocks have been proposed. A blasting vibration experiment was carried out and demonstrated that the propagation of the blasting stress waves and changing structures have an important relationship. A numerical simulation of the blasting stress wave propagation law in a layered jointed rock mass was carried out. This study found that with an increase in the joint angle, the peak velocity of blasting stress wave, transmission coefficient and reflection coefficient all gradually increased, while the attenuation coefficient gradually decreased. With an increase in joint spacing, the attenuation rate of the blasting stress waves increased.  相似文献   

11.
The effects of fractures on wave propagation problems are increasingly abstracting the attention of scholars and engineers in rock engineering field. This study aims to fully validate the ability of discontinuous deformation analysis (DDA) to model normal P‐wave propagation across rock fractures. The effects of a single fracture and multiple parallel fractures are all tested. The results indicate that DDA can accurately reflect the fracture effects, including the fractures stiffness, the fracture spacing and the fracture number, and the effects of incident wave frequency on one‐dimensional P‐wave propagation problems. Thus, DDA is able to deal well with normal incident P‐wave propagation problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
贾宝新  陈扬  潘一山  姜明  赵培  王凯兴 《岩土力学》2015,36(11):3071-3076
摆型波现象是深部开采中块系岩体固有的动力学特征之一。为研究深部块系岩体摆型波传播规律,采用理论分析与室内试验相结合的方法,研究了在冲击载荷作用下摆型波的传播特性。该试验采用12块花岗岩和橡胶夹层材料建立了模型,采用TST5915动态数据采集系统进行信号监测,分别获得了在均质夹层和部分夹层介质增厚情况下的加速度响应曲线,并运用摆型波动力模型理论进行分析。结果表明,摆型波在块体间传播过程中,频率大小不受能量大小的影响,而能量大小决定了波的衰减时间。当块体间介质黏性增加时,加速度幅值均有所下降,但对加速度衰减周期没有影响,而影响加速度衰减的主要因素是冲击载荷的能量大小。此次试验研究将为今后进一步研究摆型波动力传播特性提供一定的基础。  相似文献   

13.
王立安  赵建昌  余云燕 《岩土力学》2020,41(6):1983-1990
考虑地基横观各向同性和非均匀性,建立孔隙率、密度、剪切模量及渗透系数同时随深度变化的非均匀饱和地基模型,模型中考虑参数间的耦连影响,并引入非均匀因子表征地基的不均匀程度。基于Biot多孔介质理论建立以土骨架位移和孔隙水压力为基本未知量的控制方程,采用微分算子法对控制方程进行解耦求解,推导出非均匀饱和地基中瑞利波的频散方程。将推导结果分别退化到均匀饱和地基和单一弹性地基,验证了结果的正确性。通过数值算例,对非均匀饱和地基中瑞利波的传播速度、衰减系数及位移分布进行分析。结果表明:在低频区,饱和地基的非均匀性对瑞利波传播速度、衰减和位移都有显著影响,质点运动轨迹也由此发生变化;随着频率的升高,这种影响逐渐减小,当频率趋于无穷大时,瑞利波速度收敛于弹性地基中的波速;地基非均匀性增大了瑞利波的传播阻抗性,瑞利波位移加速衰减,传播深度小于均匀饱和地基。随着非均匀性增大,质点竖向位移的衰减快于水平位移,这种差异造成质点椭圆运动轨迹的扁率减小。此外,地基中非均匀土层厚度越小,则地基非均匀程度越高,对瑞利波的传播影响越大。  相似文献   

14.
Summary This paper presents a theoretical study on normally incident elastic P-wave transmission across single dry fractures with a nonlinear normal deformational behavior. The effects of nonlinear fracture normal behavior on P-wave transmission are examined without the mixture of fracture shear behavior. The linear displacement discontinuity model for wave propagation across fractures is extended to a nonlinear model – the hyperbolic elastic model (BB model). Numeric solutions of magnitudes of transmission (|T non|) and reflection (|R non|) coefficients, for normally incident P-wave transmission across the nonlinear deformable fractures, are obtained and related to the closure behavior of fractures. Parametric studies are conducted to acquire an insight into the effects of the nonlinear fracture normal deformation on P-wave transmission, in terms of initial normal stiffness and the ratio of current maximum closure to maximum allowable closure of the fractures, as well as the incident wave amplitude and frequency. Comparisons between the linear and nonlinear models are presented. It is shown that, |T lin| and |R lin| for the linear model are special solutions of |T non| and |R non| for the nonlinear model, when the incident wave amplitude is so low that the current maximum closure of fracture incurred during the wave transmission is much smaller, relative to the maximum allowable closure. In addition, the nonlinear fracture behavior gives rise to a phenomenon of higher harmonics during the wave transmission across the fracture. The higher harmonics contribute to the increase of |T non| from |T lin|.  相似文献   

15.
Analysis of Stochastic Seismic Wave Interaction with a Slippery Rock Fault   总被引:2,自引:2,他引:0  
Stochastic seismic wave interaction with a slippery rock fault is studied, based on the principle of conservation of momentum at the wave fronts along the fault. By using the displacement discontinuity method, the wave propagation equations are derived for incident longitudinal-(P-) and shear-(S-) waves, respectively. This is an extension of the study by Li and Ma (2010) for blast-induced wave propagation across a linear rock joint. Stochastic seismic waves are generated from a frequency spectrum and used to analyze the seismic wave interaction with a rock fault having a Coulomb-slip behavior. Parametric studies are carried out to investigate the effect of the intensity and impinging angle of the incident seismic waves on wave propagation across a slippery rock fault. Results show that the transmission of the incident P-wave is almost not affected by the fault, on the contrary, this is not the case for an incident S-wave, due to the occurrence of a relative slip which is related to the impinging angle of the incident S-wave. A quantitative study is presented which is of help in understanding the propagation and attenuation laws of seismic waves in discontinuous rock masses.  相似文献   

16.
依据弹性波理论,应力波斜入射线弹性节理时会发生波场分解。根据入射、透射及反射各波形的不同到时,运用离散元软件UDEC模拟应力波在含倾斜节理岩体中的传播并计算其透射、反射系数,并分析其波型转换规律。应力波斜入射单节理时,模拟得到的透射、反射系数随节理刚度、入射角度的变化规律,与已有的理论解是吻合的。应力波斜入射一组平行节理时,随着节理间距的增大,其同类波的透射系数Tpp、Tss先增大后减小,最后趋于稳定值;节理条数越多,Tpp、Tss越小。此外,不同条数的节理,透射系数达到最大值的临界节理间距值基本一致,但趋于稳定时的节理间距值随节理条数的增加而逐渐增大。  相似文献   

17.
王志亮  陈强  张宇 《岩土力学》2015,36(8):2177-2183
选用三参数标准线性固体作为岩石本构,提出了一种考虑岩体黏弹性的位移不连续模型;根据一维黏弹性波的特征线法,推导了节理处质点速度、应力和应变递推公式。首先,基于分离式霍普金森压杆(SHPB)对砂层进行试验,得到其应力-应变关系,并换算出砂层节理的法向刚度;接着,通过一维强间断黏弹性波的波速公式、高频波衰减系数以及任一频率下的衰减系数,确定出数值算法中的三参数。最后,基于自制的摆锤装置,探讨了一维应力波在节理岩体中的传播规律,试验中以两根长1 000 mm、直径为68.50 m的岩杆作为入射和透射杆,以3 mm砂层模拟节理。试验和数值结果吻合度良好,进一步验证了该方法的可靠性。  相似文献   

18.
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young’s modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young’s modulus of equivalent medium for wave propagation analysis.  相似文献   

19.
仇浩淼  夏唐代  郑晴晴  周飞 《岩土力学》2018,39(11):4053-4062
基于Leclaire对饱和双相孔隙弹性介质Biot模型的扩展,研究含有两种不同固相组分的三相多孔弹性介质中体波的传播特性。以饱和冻土为例,分析了各相体积分数、颗粒形状,接触参数等因素对波动方程中惯性参数、黏性参数、刚度参数的影响;对该三相介质模型进行了退化,分析了孔隙中只含液态水或固态冰时体波的特性;以饱和冻土为例,通过数值计算,探讨了饱和冻土中体波的相速度和衰减系数与胶结参数、接触参数、频率、饱和度、孔隙率等参数的关系。结果表明:与一般的饱和土不同,饱和冻土中存在5种体波,即3种纵波和2种横波;5种体波均具有弥散性和衰减性,且P1波、S1波弥散性和衰减性远小于P2、P3、S2波;胶结参数、饱和度、孔隙率对5种体波的传播特性影响显著,接触参数对传播特性影响较小。  相似文献   

20.
For the case of seismic waves in a more complex architecture porous medium wave field occurs slightly changed with changes in the structure, several parameters characteristics of the structure of the media which influence on various types of seismic wave propagation were studied. Firstly, the article establishes the isotropic elastic porous medium model, derive the corresponding elastic wave equation, and uses high-order staggered-grid finite difference method for forward modeling, the article also analyze the pore structure parameters such as porosity, viscosity and penetration influence on the wave field characteristics were also analyzed. At the same time, the study analyze the influence of porosity, permeability and viscosity on phase velocity and attenuation coefficient was analyzed in the stady. The results showed that the influence on attenuation coefficient was more sensitive than that on phase velocity. This study helps to deepen the understanding of seismic wave propagation in the practical system of complex medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号