首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Wei M  Tuo Chen 《寒旱区科学》2015,7(6):645-653
By large-scale dynamic tests carried out on a traditional sand-gravel embankment at the Beilu River section along the Qinghai-Tibet Railroad, we collected the acceleration waveforms close to the railway tracks when trains passed. The dynamic train loading was converted into an equivalent creep stress, using an equivalent static force method. Also, the creep equation of frozen soil was introduced according to the results of frozen soil rheological triaxial tests. A coupled creep model based on a time-hardening power function rule and the Druker-Prager yield and failure criterion was established to analyze the creep effects of a plain fill embankment under repeated train loads. The temperature field of the embankment in the permafrost area was set at the current geothermal conditions. As a result, the permanent deformation of the embankment under train loading was obtained, and the permanent deformation under the train loads to the total embankment deformation was also analyzed.  相似文献   

2.
To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carried out at a temperature-6 °C, and at 1.25 mm/min of loading rate. The triaxial tests include two loading modes, one with monotonic loading(i.e., triaxial compression), and another with static cycle loading. The test results under triaxial compression show that the strength and deformation behaviors of ice-saturated frozen loess are affected by confining pressure. According to the test results of triaxial loading-unloading cycle test, the elastic modulus evolution with the number of cycles under different confining pressures are analyzed.  相似文献   

3.
The main reasons for a breach of trouble-free operation of the subgrade are the different kinds of deformation, such as train load impact on subgrade surface, loss of stability to subgrade slope, weight of embankment on the base, and partial or complete failure of the railway track due to frost heaving. This paper gives a summary of deformation analysis methods being developed in Russia to estimate the operating conditions of the railway subgrade.  相似文献   

4.
As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature sensitivity of frozen soil and the heat absorption effect of the asphalt pavement. Given this issue, a full-scale experimental highway of WE was performed along the Qinghai-Tibet Highway(QTH) to investigate the differential deformation features and its developing law. The continuous three years' monitoring data taken from the experimental site, including the ground temperature and the layered deformation of WE and original embankment(OE), were used to analyze the thermal-deformation process. The results indicate that the widening part presented the remarkable thermal disturbance to the existing embankment(EE). The underlying permafrost was in a noteworthy degradation state, embodying the apparent decrease of the permafrost table and the increase of the ground temperature. Correspondingly, the heat disruption induced by widening led to a much higher deformation at the widening side compared to the original embankment, showing a periodic stepwise curve. Specifically, the deformation mainly occurred in the junction of the EE and the widening part, most of which was caused by the thawing consolidation near the original permafrost table. In contrast, the deformation of EE mainly attributed to the compression of the active layer. Furthermore, it was the deformation origination differences that resulted in the differential deformation of WE developed gradually during the monitoring period, the maximum of which reached up to 64 mm.  相似文献   

5.
Finiteelement simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of highembankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the behavior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankmentwith different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankmentexperienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the embankment with moisture content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankmentinchanging climate conditions.  相似文献   

6.
高填方加筋黄土路堤稳定性的有限元分析   总被引:5,自引:3,他引:2  
采用有限元法对国内最高(62 m)的山西北张沟加筋黄土高填路堤稳定性进行了数值模拟,对其最大主应力、最小主应力、剪应力和塑性破坏区及其变形进行了计算,然后将其计算结果与未加筋路堤相比较,得出高填方加筋黄土路堤及地基变形特性和应力特性的变化规律。结果表明,由于加筋的作用,降低了黄土高路堤的变形,提高了其稳定性。这与现场沉降观测结果基本一致。  相似文献   

7.
抗滑桩间土拱力学特性与最大桩间距分析   总被引:40,自引:2,他引:40  
抗滑桩最大桩间距确定的基础理论至今未建立起来,工程实践中仍依赖专家经验。本文从方桩桩间土拱形成的原理、力学特性论证入手,较全面地分析了桩间土拱的受力、变形,力的传递和土拱破坏瞬间的最大桩间距。并建立了最大桩间距平面计算模型。  相似文献   

8.
地震作用及其诱发的变形或滑坡常会使抗滑桩受力发生显著变化,为此,研究了地震作用下不同加固位置的抗滑桩的动力响应和边坡变形情况.试验分析表明:中桩位边坡坡顶变形比高桩位边坡坡顶变形大,但中桩位边坡坡脚堆积变形比高桩位边坡坡脚变形较小;在同样条件下中桩位抗滑桩的静力、动力弯矩小于高桩位抗滑桩相应位置的弯矩;地震结束后由于坡体震动残余变形较大,抗滑桩最终承担着震后残余弯矩,但高桩位抗滑桩的承载能力在震后仍然发挥较大.研究结果表明:高桩位加固位置可以有效发挥抗滑桩的抗弯承载能力,但中桩位可以有效抑制坡底坡脚变形.  相似文献   

9.
Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen ...  相似文献   

10.
高切坡超前支护桩与坡体共同作用分析   总被引:5,自引:0,他引:5  
何思明 《山地学报》2006,24(5):574-579
针对高切坡施工常常导致边坡失稳破坏,诱发滑坡发生的现象,提出采用超前支护桩整治不稳定高切坡的设计理论。采用解藕方法研究了超前支护桩与开挖坡体之间的相互作用机制,其中高切坡开挖面采用弹性理论分析;超前支护桩采用可以考虑桩侧向土体屈服的弹塑性理论进行桩的内力理论解,根据两者之间荷载变形关系建立联系求解,为高切坡超前支护桩的设计提供依据。结果表明:桩土相互作用力大于常规主动土压力,与边坡开挖量、开挖高度、支护桩的刚度以及土体性质等因素密切相关。  相似文献   

11.
In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers,whereasfrost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself,due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.  相似文献   

12.
岩体结构面是影响岩质边坡位移及其稳定性的重要因素之一,但是由于数学和力学上的困难,岩体结构面对岩质边坡变形的影响通常难以用理论公式计算得出,目前只能采用数值分析手段。分别针对坚硬岩边坡和软岩边坡中存在软弱结构面的情况,用有限元差分程序FLAC和边坡稳定性系数公式,定量和定性地讨论了岩体结构面倾角对岩质边坡位移的影响。通过计算分析发现,(1)岩体中结构面的存在是影响岩石边坡位移及其稳定性的重要因素之一;(2)随着结构面倾角的增加,边坡的稳定性和边坡的位移可能增加,也可能减小,并不象我们想象的那样随着结构面倾角的增加而增加,必须用定性和定量方法针对具体问题进行具体分析。  相似文献   

13.
岩石卸荷破坏特征与岩爆效应   总被引:2,自引:0,他引:2  
岩爆是在地下洞室开挖卸荷过程中发生的,岩爆特征与岩石卸荷破坏特征密切相关.本文设计了模拟洞室开挖过程的三轴卸荷实验,探讨了岩石在不同卸荷速率条件下的变形破坏特征及其岩爆效应  相似文献   

14.
Intriguing reciprocity relations exist between the static deformation excited by a point dislocation in a SNREI earth and those generated by external forces, such as tidal force, surface loading and surface shear forces. Coseismic deformations can be rewritten as follows: (1) potential change in terms of the tide deformation field, (2) radial displacement in terms of the load and tidal deformation fields, and (3) tangential displacement in terms of shear and torsional deformation fields. The relations greatly reduce the effort to compute the coseismic crustal deformation in a spherically symmetric earth.  相似文献   

15.
珊瑚礁岩土的工程地质特性研究进展   总被引:1,自引:0,他引:1  
文章综述了珊瑚礁岩土工程的研究意义、珊瑚礁岩土的组成、钙质砂的物理性质、钙质砂的静力学特性、珊瑚礁岩土中的桩基工程、珊瑚礁混凝土等方面的研究现状。得出:1)颗粒易破碎是钙质砂最重要的特性,直接影响着钙质砂的其他力学性能,而影响钙质砂颗粒破碎的主要因素有围压、有效应力、颗粒级配、初始孔隙比、颗粒强度、颗粒形状等;2)生物颗粒的易破碎以及成桩过程对钙质砂结构的扰动,导致钙质砂中的桩基承载力远低于普通石英砂;3)在以珊瑚砂为原料的混凝土工程中,利用抗硫酸盐水泥拌养的珊瑚混凝土,其强度和耐久性相对较好。最后指出:加强对钙质砂颗粒破碎发生机理的研究以及建立破碎模型、加强对新型珊瑚礁钢筋混凝土和新型桩基的研究、开展珊瑚礁岩土工程的灾害预防与处理以及工程后期的养护等,是珊瑚礁岩土工程进一步研究的方向。  相似文献   

16.
The solutions of boundary value problems involving strain-softening material property contain serious difficulties from both modeling of strain-localization and a viewpoint of numerical procedure. Mesh size-dependent hardening modulus is considered to alleviate the mesh size-dependency of the solution. The elasto-plastic soil model with kinematic hardening model considering the cumulative deformation by cyclic loading is developed. In finite element analyses, the dynamic relaxation method combined with the generalized return-mapping algorithm is applied to the static drained and un-drained tri-axial tests and plane strain tests. The cyclic behavior of retaining wall problems by freeze and thaw in cold regions is also analyzed. Finally the dynamic progressive failure analysis of rockfill dam is carried out.  相似文献   

17.
Snow covers the road embankments in winter in high latitude permafrost zones. The effect of snow cover on embankments was simulated based on field measurements of boundary conditions and initial ground temperature profile in Mohe, China. The effect of thermosyphons on the embankment warmed by snow cover was evaluated by numerical simulations as well. The results indicate that the difference of thermal regimes between non-thermosyphon and thermosyphon embankments reaches to 22 m in depth below the ground surface. It is much warmer in the non-thermosyphon embankment body in winter. Affected by the snow cover, heat flux gradually spreads into the deep ground of the subgrade over time. The permafrost table under the slope toe of a thermosyphon embankment is 1.2 m higher than that of a non-thermosyphon embankment in the 20th year. In addition, the permafrost table at the slope toe of a thermosyphon embankment is 26 cm deeper over 20 years. These results indicate that thermosyphons can greatly weaken the warm effect of snow cover. However, thermosyphons cannot avoid the degradation of permafrost under the scenarios of snow cover. Therefore, composite measures need to be adopted to keep embankment stability in snowy permafrost zones.  相似文献   

18.
We consider the problem of year-round cooling of water-saturated soil to freezing temperatures in order to convert it into a state of permafrost.A new soil-cooling apparatus is proposed.The apparatus is to be made in modular form and connected to passive-active thermal piles (thermosyphons).The estimated capacity of one apparatus allows simultaneous use of up to 1,000 thermal piles for ground freezing.The apparatus is based on natural sources of energy:solar radiation and wind;and it can be used for soil freezing.This approach can prevent thawing of soft soils under railways and roads,as well as under buildings or structures,in an area of more than tens of hectares.The apparatus has no mechanical moving parts and can operate for a long time in stand-alone mode without staff involvement.  相似文献   

19.
This paper re-evaluates the origin of some peculiar patterns of ground deformation in the Central Apennines, observed by space geodetic techniques during the two earthquakes of the Colfiorito seismic sequence on September 26th, 1997. The surface displacement field due to the fault dislocation, as modelled with the classic Okada elastic formulations, shows some areas with high residuals which cannot be attributed to non-simulated model complexities. The residuals were investigated using geomorphological analysis, recognising the geologic evidence of deep-seated gravitational slope deformations (DSGSD) of the block-slide type. The shape and direction of the co-seismic ground displacement observed in these areas are correlated with the expected pattern of movement produced by the reactivation of the identified DSGSD. At least a few centimetres of negative “Line of Sight” ground displacement was determined for the Costa Picchio, Mt. Pennino, and Mt. Prefoglio areas. A considerable horizontal component of movement in the Costa Picchio DSGSD is evident from a qualitative analysis of ascending and descending interferograms. The timing of the geodetic data indicates that the ground movement occurred during the seismic shaking, and that it did not progress appreciably during the following months. This work has verified the seismic triggering of DSGSD previously hypothesized by many researchers. A further implication is that in the assessment of DSGSD hazard seismic input needs to be considered as an important cause of accelerated deformation.  相似文献   

20.
The unfrozen water content and ice content of frozen soil change continuously with varying temperatures, resulting in the temperature dependence of mechanical properties of frozen soil. Thus the dynamic behavior of embankment in permafrost regions under train loading also alters with seasons. Based on a series of strong-motion tests that were carried out on the traditional embankment of Qinghai-Tibet Railway(QTR) in permafrost regions, the acceleration waveforms recorded at the embankment shoulder and slope toes were obtained. Testing results show an obvious attenuation effect on the vertical train loading from road shoulder to slope toes. Furthermore, numerical simulations of a traditional embankment under vertical train loading in different seasons were conducted, and the dynamic behavior of the embankment was described. The results show that the vibration attenuation in the cold season is greater than that in the warm season. The maximum acceleration of vibration drops to about 5% when the train vibration load is transferred through the embankment into the permafrost, and the high-frequency components are absorbed when the vibration transmits downward. Moreover, the dynamic stress under the dynamic train loading decreases exponentially with an increasing depth in different seasons. The results can be a reference for design and maintenance of embankments in permafrost regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号