首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
建设用地定额标准是控制土地利用的有效工具。近年来各地高等院校建设快速发展,而相关的用地标准涵盖内容不全,致使新建校区用地规模过大、容积率偏低等问题较为普遍。通过对教育部及北京、江苏、上海等省市相关的高校用地定额标准的对比分析,并结合上海部分高校的调查,提出合理确定规划指标、优化土地利用结构布局与比例等完善高校用地定额标准的建议。  相似文献   

2.
A. E. Lucas 《GeoJournal》1996,39(2):133-142
Geographic information systems can provide easy access to large quantities of geographically-referenced data for monitoring, planning and environmental decision support for coastal applications. The dynamic and variable nature of the coastal ocean environment gives rise to data issues different than those associated with land-based GIS. This paper investigates, in particular, the use of different data, including those produced by numerical simulations or ocean models, for coastal management and is illustrated with examples from a Baltic Sea GIS implementation. Implications for the use of these data in environmental management are discussed.  相似文献   

3.
跨海桥隧工程设计需要推算工程位置不同重现期设计流速,由于现场缺乏长期实测流速资料,设计流速推算存在很大困难。研究提出了采用不同重现期典型风暴潮过程推算河口海岸设计流速的数值模拟方法,对河口地区考虑洪水径流与风暴潮流的耦合。在依据澳门验潮站1925—2003年实测潮位资料分析珠江口海域风暴潮过程特征的基础上,结合潮位和潮差年极值频率分析结果构建了不同重现期典型风暴潮潮型。采用平面二维水动力数学模型模拟了不同重现期风暴潮和上游一般洪水组合条件下珠江口水域的流场,得出港珠澳大桥沿线各控制点处设计流速。  相似文献   

4.
《GeoJournal》1992,27(1):132-132
  相似文献   

5.
6.
7.
8.
9.
10.
水文土壤学面临的机遇与挑战   总被引:4,自引:0,他引:4  
水文土壤学是以土壤发生学、土壤物理学和水文学为主的新兴交叉学科,综合研究不同时空尺度土壤与水的相互作用关系,在地球表层系统科学综合集成研究中具有特殊地位和重要作用。阐述了水文土壤学形成背景与内涵、学科与理论基础及研究进展,并展望未来面临的机遇与挑战。水文土壤学重点解决以下2个科学问题:①土壤结构及土壤—景观分布格局在不同时空尺度上如何主导和影响水文过程以及与其相关的生物地球化学循环和生态系统演变;②景观系统水文过程如何影响土壤发育、演变、异质性及其功能。水文土壤学面临研究方法和理论创新、多尺度综合观测网络体系构建及人才培养等方面的挑战。  相似文献   

11.
12.
13.
Although many of the current hypotheses to explain the origin and distribution of the Amazon biodiversity has been based directly or indirectly on geological data, the reconstruction of the geological history of the Amazon region is still inadequate to analyze its relationship with the biodiversity. This work has the main goal to characterize the sedimentary successions formed in the Brazilian Amazon in the Neogene-Quaternary discussing the evolution of the depositional systems through time and analyzing their main controlling mechanisms in order to fill up this gap. Radar image interpretation, sedimentological studies, and radiocarbon dating allowed the mapping of Plio-Pleistocene to Holocene units along the Solimões-Amazonas River, Brazil. This integrated work led to the characterization of five sedimentary successions overlying Miocene deposits of the Solimões/Pebas Formation, which include the following: Içá Formation (Plio-Pleistocene), deposits Q1 (37,400-43,700 14C yr B.P.), deposits Q2 (27,200 14C yr B.P.), deposits Q3 (6730-2480 14C yr B.P.), and deposits Q4 (280-130 14C yr B.P.). These deposits occur mostly to the west of Manaus, forming NW-SE elongated belts that are progressively younger from SW to NE, indicating a subsiding basin with a depocenter that migrated to the NE. The reconstruction of the depositional history is consistent with significant changes in the landscapes. Hence, the closure of a large lake system at the end of the Miocene gave rise to the development of a Plio-Pleistocene fluvial system. This was yet very distinct from the modern drainage, with shallow, energetic, highly migrating, braided to anastomosed channels having an overall northeast outlet. This fluvial system formed probably under climatic conditions relatively drier than today's. During the early Pleistocene, there was pronounced erosion, followed by a renewed depositional phase ca. 40,000 14C yr B.P., with the development of prograding lobes and/or crevasse splays associated with a lake system (i.e., fan-delta) and/or fluvial flood plain areas. After a period of erosion, a fluvial system with eastward draining channels started to develop at around 27,000 14C yr B.P. The fluvial channels were overflooded in mid-Holocene time. This flooding is attributed to an increased period of humidity, with a peak between 5000 and 2500 14C yr B.P. The data presented herein support that, rather than being a monotonous area, the Amazonia was a place with frequent changes in landscape throughout the Neogene-Quaternary, probably as a result of climatic and tectonic factors. We hypothesize that these changes in the physical environment stressed the biota, resulting in speciation and thus had a great impact on modern biodiversity.  相似文献   

14.
15.
The idea of using a thin solid element, called a thin-layer element, in soil-structure interaction and rock joints is proposed. A special constitutive model is used and various deformation modes such as no slip, slip, debonding and rebonding are incorporated. The shear stiffness is found from special laboratory tests and the normal stiffness is assumed to be composed of participation of the thin-layer element and the adjoining solid elements. A parametric study shows that the thickness of the thin-layer element can be such that the ratio of thickness to (mean) dimension of the adjacent element is in the range of 0.01 to 0.1. A number of simple and practical problems are solved to illustrate the success of the thin-layer element for soil-structure interaction problems.  相似文献   

16.
17.
The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find eco-friendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (+34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号