首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sekaninaite (XFe > 0.5)-bearing paralava and clinker are the products of ancient combustion metamorphism in the western part of the Kuznetsk coal basin, Siberia. The combustion metamorphic rocks typically occur as clinker beds and breccias consisting of vitrified sandstone–siltstone clinker fragments cemented by paralava, resulting from hanging-wall collapse above burning coal seams and quenching. Sekaninaite–Fe-cordierite (XFe = 95–45) is associated with tridymite, fayalite, magnetite, ± clinoferrosilite and ±mullite in paralava and with tridymite and mullite in clinker. Unmelted grains of detrital quartz occur in both rocks (<3 vol% in paralavas and up to 30 vol% in some clinkers). Compositionally variable siliceous, K-rich peraluminous glass is <30% in paralavas and up to 85% in clinkers. The paralavas resulted from extensive fusion of sandstone–siltstone (clinker), and sideritic/Fe-hydroxide material contained within them, with the proportion of clastic sediments ≫ ferruginous component. Calculated dry liquidus temperatures of the paralavas are 1,120–1,050°C and 920–1,050°C for clinkers, with calculated viscosities at liquidus temperatures of 101.6–7.0 and 107.0–9.8 Pa s, respectively. Dry liquidus temperatures of glass compositions range between 920 and 1,120°C (paralava) and 920–960°C (clinker), and viscosities at these temperatures are 109.7–5.5 and 108.8–9.7 Pa s, respectively. Compared with worldwide occurrences of cordierite–sekaninaite in pyrometamorphic rocks, sekaninaite occurs in rocks with XFe (mol% FeO/(FeO + MgO)) > 0.8; sekaninaite and Fe-cordierite occur in rocks with XFe 0.6–0.8, and cordierite (XFe < 0.5) is restricted to rocks with XFe < 0.6. The crystal-chemical formula of an anhydrous sekaninaite based on the refined structure is | \textK0.02 |(\textFe1.542 + \textMg0.40 \textMn0.06 )\Upsigma 2.00M [(\textAl1.98 \textFe0.022 + \textSi1.00 )\Upsigma 3.00T1 (\textSi3.94 \textAl2.04 \textFe0.022 + )\Upsigma 6.00T2 \textO18 ]. \left| {{\text{K}}_{0.02} } \right|({\text{Fe}}_{1.54}^{2 + } {\text{Mg}}_{0.40} {\text{Mn}}_{0.06} )_{\Upsigma 2.00}^{M} [({\text{Al}}_{1.98} {\text{Fe}}_{0.02}^{2 + } {\text{Si}}_{1.00} )_{\Upsigma 3.00}^{T1} ({\text{Si}}_{3.94} {\text{Al}}_{2.04} {\text{Fe}}_{0.02}^{2 + } )_{\Upsigma 6.00}^{T2} {\text{O}}_{18} ].  相似文献   

2.
High-Na slag-like rocks (paralava) with 4.5–11 % Na2O from the Altyn-Emel mud volcanic field, Kazakhstan, are the products of melting of sediment + salt mixtures by methane flares associated with mud extrusion. The main minerals of the paralavas are diopside and wollastonite which have quench morphologies. Other high-temperature phases (crystallizing from melt and vapour phase) are tridymite, cristobalite, chlorapatite, alkali feldspar, pyrrhotite, native iron and silicon, iron phosphides, titanite, rutile, and carbon. The paralavas lack the Na–Ca silicates devitrite and combeite, but have high-Na and Na–K glasses that have not been homogenized despite low viscosities of <10?3.5 Pa s. The large number of ignition foci in the Altyn-Emel mud volcano field indicates gas venting from small, shallow reservoirs. The methane flares are inferred to have been small and the fire events short-lived. Fires were extinguished once overpressure released during eruption, methane venting stopped and melted rocks rapidly quenched. The periodicity of eruptions and methane flaring most likely depends on the recurrence of earthquakes (M < 5) which are frequent in this tectonically active area.  相似文献   

3.
Pseudotachylite veins have been found in the mylonite zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. They are associated with faults with WNW-ESE to ENE-WSW or NE-SW trends which make a conjugate set, cutting foliations of the host mylonitic rocks with high obliquity. The mylonitic rocks comprise greenschist facies to prehnite-pumpellyite facies mineral assemblages. The mode of occurrence of the pseudotachylite veins indicates that they were generated on surfaces of the faults and were intruded as injection veins along microfractures in the host rocks during brittle deformation in near-surface environments. An analysis of the deformational and metamorphic history of the Hidaka Main Zone suggests that the ambient rock temperature was 200–300° C immediately before the formation of the Hidaka pseudotachylite. Three textural types of veins are distinguished: cryptocrystalline, microcrystalline and glassy. The cryptocrystalline or glassy type often occupies the marginal zones of the microcrystalline-type veins. The microcrystalline type is largely made up of quench microlites of orthopyroxene, clinopyroxene, biotite, plagioclase and opaque minerals with small amounts of amphibole microlites. The interstices of these microlites are occupied by glassy and/or cryptocrystalline materials. The presence of microlites and glasses in the pseudotachylite veins suggests that the pseudotachylites are the products of rapid cooling of silicate melts at depths of less than 5 km. The bulk chemical composition of the pseudotachylite veins is characterized by low SiO2 and a high water content and is very close to that of the host mylonitic rocks. This indicates that the pseudotachylite was formed by virtual total melting of the host rocks with sufficient hydrous mineral phases. Local chemical variation in the glassy parts of the pseudotachylite veins may be due to either crystallization of quench microlites or the disequilibrium nature of melting of mineral fragments and incomplete mixing of the melts. Pyroxene microlites show a crystallization trend from hypersthene through pigeonite to subcalcic augite with unusually high Al contents. The presence of pigeonite and high-Al pyroxene microlites, of hornblende and biotite microlites and rare plagioclase microlites may indicate the high temperature and high water content of the melt which formed the pseudotachylite veins. The melt temperatures were estimated to be up to 1100° C using a two-pyroxene geothermometer. Using published data relating water solubilities in high-temperature andesitic magmas to pressure, a depth estimate of about 4 km is inferred for the Hidaka pseudotachylites. Evidence derived from pseudotachylites in the Hidaka metamorphic belt supports the conclusion that pseudotachylite is formed by frictional melting along fault surfaces at shallow depths from rocks containing hydrous minerals.  相似文献   

4.
The diffusion properties of Na, Cs, Sr, Ba, Co, Mn, Fe and Sc ions in a basaltic and an andesitic melt have been determined experimentally using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,300–1,400° C. Diffusion of all cations follows an Arrhenius relationship; the values of the activation energies range from 24 kcal mol–1 for Na to 67 kcal mol–1 for Co in the andesitic melt, and from 39 kcal mol–1 for Na to 65 kcal mol–1 for Cs in the basaltic melt. Relative diffusivities in the basaltic melt, but not in the andesitic melt, correlate with assumed ionic radii values. Each cation, except Na+, diffuses faster in the basaltic melt than in the andesitic melt over the studied temperature range. Sodium shows similar diffusivity in the two melts.Compensation diagrams incorporating new and some previously-published data indicate that Cs probably diffuses by different mechanisms in different silicate glass and melt systems. Iron has a relatively high activation energy which is consistent with its part occupancy of tetrahedral co-ordination polyhedra.  相似文献   

5.
As shown by geological, mineralogical, and isotope geochemical data, trachybasaltic-trachytic-trachyrhyolitic (TTT) rocks from the Nyalga basin in Central Mongolia result from several eruptions of fractionated magmas within a short time span at about 120 Ma. Their parental basaltic melts formed by partial melting of mantle peridotite which was metasomatized and hydrated during previous subduction events. Basaltic trachyandesites have high TiO2 and K2O, relatively high P2O5, and low MgO contents, medium 87Sr/86Sr(0) ratios (0.70526-0.70567), and almost zero or slightly negative εNd(T) values. The isotope geochemical signatures of TTT rocks are typical of Late Mesozoic basaltic rocks from rift zones of Mongolia and Transbaikalia. The sources of basaltic magma at volcanic centers of Northern and Central Asia apparently moved from a shallower and more hydrous region to deeper and less hydrated lithospheric mantle (from spinel to garnet-bearing peridotite) between the Late Paleozoic and the latest Mesozoic. The geochemistry and mineralogy of TTT rocks fit the best models implying fractional crystallization of basaltic trachyandesitic, trachytic, and trachyrhyodacitic magmas. Mass balance calculations indicate that trachytic and trachydacitic magmas formed after crystallization of labradorite-andesine, Ti-augite, Sr-apatite, Ti-magnetite, and ilmenite from basaltic trachyandesitic melts. The melts evolved from trachytic to trachyrhyodacitic and trachyrhyolitic compositions as a result of prevalent crystallization of K-Na feldspar, with zircon, chevkinite-Ce, and LREE-enriched apatite involved in fractionation. Trachytic, trachyrhyodacitic, and trachyrhyolitic residual melts were produced by the evolution of compositionally different parental melts (basaltic trachyandesitic, trachytic, and trachyrhyodacitic, respectively), which moved to shallower continental crust and accumulated in isolated chambers. Judging by their isotopic signatures, the melts assimilated some crustal material, according to the assimilation and fractional crystallization (AFC) model.  相似文献   

6.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

7.
We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr–143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with >?4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of <?4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures (~?4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative εNdi (??5.2 to ??9.4) and radiogenic εSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10–20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.  相似文献   

8.
The Kamarbon alkaline gabbroic intrusion crops out in Central Alborz, north Iran, along the northern margin of the Alpine-Himalayan belt. The gabbroic intrusion includes theralites at margins which replace with teschenites toward the center. In teschenitic rocks, the main minerals are diopside, clinopyroxene, and rhönite. In this research, the occurrence of rhönite is reported in Kamarbon teschenitic gabbros, and also its mineralogical properties, paragenesis, and source magma are investigated. Based on whole rock and microprobe analysis data, we try to clarify the formation of Kamarbon gabbro and the crystallization condition of rhönite. In teschenitic gabbros, rhönite reveals the composition (Na, Ca)1.97(Ti, VIAl, Fe+3, Fe+2, Mn, Mg)5.99(Si, IVAl)6.02O20. On the basis of petrographical observations and mineral chemistry, we suggest that the teschenites were formed in distinctive lower pressures and temperatures than theralites, below 1.9 kbar and 1075 °C. Rhönite was crystallized (at the mentioned P-T condition) as a primary phase, in the late stage of crystallization at shallow depth corresponding with 6–10 km, in teschenites. Important factors of the rhönite crystallization in undersaturated magmas can be regardarded as Al and Ti enrichment and Si depletion; the same enrichment and depletion are also observed in the associated clinopyroxenes.  相似文献   

9.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

10.
We studied ferrous paralava, a high-temperature rock, produced by complete fusion of the sedimentary protolith in the Ravat natural coal fire which has been on for over two thousand years. The paralava was sampled from the Fan-Yagnob coal deposit at the Kukhi-Malik site in the vicinity of former Ravat Village in central Tajikistan. This rock contains fayalite, sekaninaite, hercynite, Ti-magnetite, tridymite, and siliceous glass. Low-Ca pyroxene (clinoferrosilite), globules of sulfides (mainly pyrrhotite) and Fe-Ti oxides, secondary greenalite (after fayalite) and hematite are minor. Paralava includes xenoliths of partially molten clinkers (up to 20 vol.%) composed of mullite, cordierite, tridymite, and relict detrital quartz. We found relatively high Fe contents (100?Fe/(Fe+Mg) > 60) in mafic minerals, high K2O enrichment (up to 1.4 wt.%) in sekaninaite, and an unusually low CaO content (0.5 wt.%) in the rock. The Ravat paralava appears to be derived from a mixture of pelitic rocks (50–70%) and iron-rich rocks (30–50%), but without participation of calcareous material, which explains the low CaO and the absence of plagioclase and Ca-bearing pyroxene. The primary melt was as hot as >1210 °C, and the coal-fired fayalite-sekaninaite paralava crystallized at 1200–1100 °C, at a relatively low oxygen fugacity (near the QFM buffer), outside the zone of active aeration. Large-scale crystallization of ferrospinels and fayalite led to increasing Al2O3 and SiO2 in the melt whence sekaninaite and tridymite crystallized as later phases. The residual melt progressively acquired a more silicic-aluminous composition, rich in K2O, CaO, and P2O5, and became quenched to glass at >1080–1090 °C, when temperature dropped abruptly, possibly, by roof collapse or opening of large cracks, as it usually happens in underground coal fires.  相似文献   

11.
The basaltic maar of Youkou, situated in the Adamawa Volcanic Massif in the eastern branch of the continental segment of the Cameroon Volcanic Line, contains mantle-derived xenoliths of various types in pyroclastites. Spinel-bearing lherzolite xenoliths from the Youkou volcano generally exhibit protogranular textures with olivine (Fo89.4?90.5), enstatite (En89???91Fs8.7?9.8Wo0.82?1.13), clinopyroxene, spinel (Cr#Sp?=?9.4–13.8), and in some cases amphibole (Mg#?=?88.5–89.1). Mineral equilibration temperatures in the lherzolite xenoliths have been estimated from three–two pyroxene thermometers and range between 835 and 937 °C at pressures of 10–18 kbar, consistent with shallow mantle depths of around 32–58 km. Trends displayed by bulk-rock MgO correlate with Al2O3, indicating that the xenoliths are refractory mantle residues after partial melting. The degree of partial melting estimated from spinel compositions is less than 10%: evidences for much higher degrees of depletion are preserved in one sample, but overprinted by refertilization in others. Trace element compositions of the xenoliths are enriched in highly incompatible elements (LREE, Sr, Ba, and U), indicating that the spinel lherzolites underwent later cryptic metasomatic enrichment induced by plume-related hydrous silicate melts. The extreme fertility (Al2O3?=?6.07–6.56 wt% in clinopyroxene) and the low CaO/Al2O3 ratios in the spinel lherzolites suggest that they could not be a simple residue of partial melting of primitive mantle and must have experienced refertilization processes driven by the infiltration of carbonatite or carbonated silicate melts.  相似文献   

12.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

13.
ABSTRACT

Volcanic rocks in the Hala’alate and Aladeyikesai formations, which are composed of basaltic andesite and pyroxene andesite, are widespread in Hala’alate Mountain, West Junggar, Northwest China. These rocks (plagioclase + clinopyroxene/olivine) formed in the late Carboniferous and show a remarkable geochemical affinity with typical sanukitoids with oversaturated SiO2 (52.9–56.9 wt.%) and high MgO (3.47–6.88 wt.%, Mg# >48) contents. They also exhibit a narrow range of Sr-Nd-Pb isotopes within (87Sr/86Sr)i = 0.7037–0.7041, εNd(t) = 4.4–6.2, 206Pb/204Pb = 18.22–18.41, 207Pb/204Pb = 15.48–15.52, 208Pb/204Pb = 37.99–38.30. Hala’alate Formation volcanic rocks are similar to the sanukitoids of Karamay, with high Sr (633.5–970.1 ppm), Ba (268.7–796.3 ppm), and Sr/Y (61.34–84.28), formed by partial melting of the mantle metasomatized by slab-derived adakitic melts. In contrast, Aladeyikesai Formation volcanic rocks show some affinity with sanukitoids of the Hatu area and the Setouchi Volcanic Belt, with low Sr (442.2–508.7 ppm), Ba (199.2–485.1 ppm), and Sr/Y (25.03–30.28), generated by the partial melting of subducting sediments. Identification of late Carboniferous sanukitoids in Hala’alate Mountain provides important constraints on the closing time of the remnant ocean basin in West Junggar, and implies that multi-stage subduction–accretionary orogeny plays a crucial role in the evolution and growth of the continental crust in the Central Asian Orogenic Belt.  相似文献   

14.
Plagioclase feldspar/magmatic liquid partition coefficients for Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE have been determined experimentally at 1 atm total pressure in the temperature range 1150–1400°C. Natural and synthetic melts representative of basaltic and andesitic bulk compositions were used, crystallizing plagioclase feldspar in the composition range An35–An85. Partition coefficients for Sr are greater than unity at all geologically reasonable temperatures, and for Ba are less than unity above approximately 1060°C. Both are strongly dependent upon temperature. Partition coefficients for the trivalent REE are relatively insensitive to temperature. At fixed temperature they decrease monotonically from La to Lu. The partition of Eu is a strong function of oxygen fugacity. Under extreme reducing conditions DEu approaches the value of DSr.  相似文献   

15.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

16.
New mineralogical, bulk chemical and oxygen isotope data on the Palaeoproterozoic Bijli Rhyolite, the basal unit of a bimodal volcanic sequence (Dongargarh Group) in central India, and one of the most voluminous silicic volcanic expressions in the Indian Shield, are presented. The Bijli Rhyolite can be recognized as a poorly sorted pyroclastic deposit, and comprises of phenocrystic K-feldspar + albite ± anorthoclase set in fine-grained micro-fragmental matrix of quartz-feldspar-sericite-chlorite-iron-oxide ± calcite. The rocks are largely metaluminous with high SiO2, Na2O + K2O, Fe/Mg, Ga/Al, Zr, Ta, Sn, Y, REE and low CaO, Ba, Sr contents; the composition points to an ‘A-type granite’ melt. The rocks show negative Cs-, Sr-, Eu- and Ti- anomalies with incompatible element concentrations 2–3 times more than the upper continental crust (UCC). LREE is high (La/Yb ∼ 20) and HREE 20–30 times chondritic. δ18Owhole-rock varies between 4.4 and 7.8‰ (mean 5.87±1.26‰). The Bijli melt is neither formed by fractionation of a basaltic magma, nor does it represent a fractionated crustal melt. It is shown that the mantle-derived high temperature basaltic komatiitic melts/high Mg basalts triggered crustal melting, and interacted predominantly with deep crust compositionally similar to the Average Archaean Granulite (AAG), and a shallower crustal component with low CaO and Al2O3 to give rise to the hybrid Bijli melts. Geochemical mass balance suggests that ∼ 30% partial melting of AAG under anhydrous condition, instead of the upper continental crust (UCC) including the Amgaon granitoid gneiss reported from the area, better matches the trace element concentrations in the rocks. The similar Ta/Th of the rhyolites (0.060) and average granulite (0.065) vs. UCC (0.13) also support a deep crustal protolith. Variable contributions of crust and mantle, and action of hydrothermal fluid are attributed for the spread in δ18Owhole-rock values. The fast eruption of high temperature (∼ 900°C) rhyolitic melts suggests a rapid drop in pressure of melting related to decompression in an extensional setting.  相似文献   

17.
Bima Formation volcanic rocks, which record the history of Neo-Tethyan subduction, are found within the central and eastern segments of the southern Lhasa subterrane, Tibetan Plateau. Zircon UPb dating, whole-rock major and trace element analysis, and Sr–Nd–Pb–Hf isotopic compositions of Bima Formation volcanic rocks from the central segment of the southern Lhasa subterrane were used to constrain the magmatic and tectonic evolution of the Lhasa terrane during the early Mesozoic. Zircon UPb dating of five samples yielded consistent ages of 184.3 ± 2.4 to 176.8 ± 3.5 Ma. The dominant volcanic rock types within the Bima Formation are basalts, basaltic andesites, andesites, and dacites, which are enriched in the large-ion lithophile elements (e.g., Rb, Sr, and Ba) and depleted in high-field-strength elements (e.g., Nb, Ta, and Ti). (87Sr/86Sr)t ratios are low (0.702900–0.704146), εNd(t) and εHf(t) values are high and positive (+4.4 to +6.9 and + 9.6 to +15.7, respectively), and Pb isotope ratios are homogeneous (initial 206Pb/204Pb = 18.28–18.40; 207Pb/204Pb = 15.53–15.56; 208Pb/204Pb = 38.21–38.38). Combining the new data with those from a previous study of Bima Formation volcanic rocks from the eastern segment of the southern Lhasa subterrane indicates that the Bima Formation formed between the Middle Triassic and Early Jurassic. It suggests that more widespread early Mesozoic volcanic rocks in the southern margin of the Lhasa terrane. The basaltic rocks of the Bima Formation were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids, and subsequently experienced fractional crystallization without significant crustal contamination. The andesitic and dacitic rocks were formed by fractional crystallization of the basaltic magma. Our study indicates that the Bima Formation volcanic rocks were generated within a continental island arc setting related to northward subduction of the Neo-Tethyan oceanic slab during the early Mesozoic.  相似文献   

18.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

19.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

20.
Experiments on MORB?+?4 wt% H2O at 0.8–2.8 GPa and 700–950 °C (Liu in High pressure phase equilibria involving the amphibolite–eclogite transformation. PhD dissertation, Stanford University, Stanford, California, 1997; Liu et al. in Earth Planet Sci Lett 143:161–171, 1996) were reexamined for their major and trace element melt compositions and melting relations. Degree of melting diminishes at greater pressures, with corresponding evolution of melt from andesitic at the lowest pressures and hottest temperatures to high-silica rhyolitic at the greatest pressure and coolest temperature. Quartz contributes greatly to the production of near-solidus melts of basaltic eclogite, with the result that melt productivity falls markedly following quartz exhaustion. This limits the extent of melting attainable in the basaltic eclogite portions of sub-arc subducting plates to no more than ~?2?×?the modal wt% quartz in the mafic eclogite protolith. Synthesized residual mineral assemblages lack an epidote-series mineral at temperatures?>?750 °C, and as a result, melts from the rutile eclogite and rutile-amphibole eclogite facies have elevated concentrations of light rare earth elements, U, Th, have elevated Ba, K, and Sr, high Sr/Y, and are strongly depleted in Nb, Y, and the heavy rare earth elements. Models of eclogite partial melt reacting with peridotite of the mantle wedge reproduce major and trace element characteristics of parental arc magmas so long as the proportions of infiltrating melt to peridotite are relatively high, consistent with channelized ascent. Melt mass is estimated to increase roughly three- to ten-fold, consistent with H2O concentrations of 3–7 wt% in the magmas produced by reaction. Partial melts of subducting basaltic eclogite are predicted to have positive Sr concentration anomalies, relative to Ce and Nd, that persist through melt-peridotite reactions. Primitive arc magmas commonly have positive Sr anomalies, whereas such anomalies are smaller in estimates of the bulk continental crust. Overall, Sr anomalies diminish passing from primitive to more evolved arc volcanic rocks, consistent with extensive mineral-melt differentiation (crystallization, partial remelting) involving plagioclase. On the order of 50 wt% differentiation would be necessary to eliminate Sr positive anomalies, based on geochemical variations in the Cascade and western Aleutian magmatic arcs. Loss to the mantle of cumulates and restites with high Sr anomalies, in abundances broadly equal to the mass of the preserved crust, would be required to form the continents via processes similar to present-day subduction magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号