首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We compare six high-resolution Holocene, sediment cores along a S–N transect on the Norwegian–Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10–102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than ±1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas–Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S–N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60–69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72–77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S–N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000–8000, 5500–3000 and 1000 and 400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.  相似文献   

2.
We reconstruct the Holocene range fluctuations of the European pond turtle (Emys orbicularis) for northern and Central Europe. Based on 529 subfossil records and radiocarbon dating of critical finds, we provide evidence that E. orbicularis experienced a rapid range expansion with Holocene warming. Phylogeographic data argue for a colonization of northern and Central Europe from a glacial refuge located in the south-eastern Balkans. Already in the Late Preboreal (9100–8600 cal BC) the species occurred in northern Central Europe and was widespread in Denmark and southern Sweden (Skåne) during the Boreal (8600–7100 cal BC). The maximum range extension occurred during the Holocene climatic optimum (Atlantic: 7100–3750 cal BC), with records in southern England, middle Sweden, and northern Estonia. After the early Subboreal (3750–1750 cal BC) northern populations collapsed, coinciding with a climatic cooling and oceanization. Northern populations were most likely established via long distance dispersal (rafting using rivers debouching in the North and Baltic Seas); after northern Europe was reached, a minimum dispersal of 50 km per 100 years may be hypothesized for the Boreal.  相似文献   

3.
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm  250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.  相似文献   

4.
This paper presents a high-resolution lake-level record for the Holocene at Lago Preola (Sicily, southern Italy) based on a specific sedimentological approach, with a chronology derived from AMS radiocarbon dates. It gives evidence of three major successive palaeohydrological periods, with (1) a pronounced dryness during the early Holocene until ca 10300 cal BP, (2) a highstand from ca 10300 to 4500 cal BP, and (3) a marked lowstand from 4500 cal BP to present. Large amplitude lake-level fluctuations characterise two transition phases at ca 10300–9000 and 6400–4500 cal BP. Period 2 was interrupted between 8300 and 7000 cal BP by a dry phase that was punctuated to ca 7300 cal BP by the deposition of a tephra from neighbouring Pantelleria Island. Comparisons of the Preola record with other palaeohydrological records along north–south and west–east transects in the Mediterranean show contrasting patterns of hydrological changes: north (south) of around 40°N latitude, the records highlight a mid-Holocene period characterised by lake-level minima (maxima). Humid mid-Holocene conditions over the Mediterranean south of 40°N were probably linked to a strong weakening of the Hadley cell circulation and of monsoon winds. We suggest that the maximum of humidity in the Mediterranean during the mid-Holocene was characterised by humid winters to the north of 40°N and humid summers to the south. On a multi-centennial scale, the high-resolution palaeohydrological reconstructions in the central Mediterranean area reveal a strong climate reversal around 4500–4000 cal BP, with contrasting changes in the hydrological cycle. In addition to seasonal and inter-hemispherical changes related to orbital forcing, this major oscillation might be related to non-linear responses of the climatic system to the gradual decrease in summer insolation at northern latitudes. Another major climate oscillation around 7500–7000 cal BP may have resulted from the combined effects of (1) a strong rate of change in insolation, and (2) variations in solar activity. Finally, comparisons of the Preola lake-level record with Sicilian pollen records suggest a strong influence of moisture availability on vegetation development in Sicily. Very dry early Holocene conditions probably prevented the expansion of coastal evergreen forests, while decreasing moisture availability since the onset of the late Holocene may have exacerbated effects of intensive land-use.  相似文献   

5.
Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea‐surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2–3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice‐core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961–1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250–1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1–2 °C compared to the AD 1961–1990 average. Steep north–south and west–east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.  相似文献   

7.
Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian–Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8°C at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7°C during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1°C) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3°C during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7°C) temperature decrease, while the second is characterized by 1°C cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.  相似文献   

8.
Deep-water temperatures (DWTs) from the Western Mediterranean Sea are reconstructed for the last 50 ka based on the analysis of Mg/Ca ratios in benthic foraminifera from core MD95-2043 collected in the Alboran Sea. The exceptionally high sedimentation rates of this core and the robust chronology available allow discussion of the results in the context of the Dansgaard–Oeschger (D–O) rapid climatic variability. The applicability of Mg/Ca thermometry in the Western Mediterranean Deep-Water mass (WMDW) is first tested by the analysis of different benthic species in a collection of Mediterranean core tops. The results indicate the need of a readjustment of the existing Cibicidoides spp. calibrations in order to reconstruct present Western Mediterranean DWT values (12.7 °C). Different physiological effects in the Mg uptake between the C. pachydermus living in different regions could account for this offset in the Mediterranean samples. Consequently, the obtained DWT record still has many uncertainties in absolute terms but trends provide valuable information on past changes in WMDW conditions. The DWT record shows significant oscillations in relation to the D–O cycles, colder values occurred during the time of D–O stadials and warmer ones during D–O interstadials. Surprisingly, the coldest DWTs occurred during the time of Heinrich Event 4 (HE4) and not during the Last Glacial Maximum (LGM) when DWTs were mostly warm. These and other particular features of the DWT reconstruction mimic changes in the vegetation from the Eastern Mediterranean indicating the control of the Mediterranean climate on the DWT record. Paired analyses of Mg/Ca and δ18Occ (calcite δ18O) provide the opportunity to reconstruct deep-water δ18O (δ18Odw) and past salinities and hence changes in past WMDW density. Due to the large error associated with these calculations, they can only be discussed in terms of relative changes between different intervals. The results suggest the dominance of a heavier water end member during glacial times and a lighter one during the early Holocene in relation to the δ18Odw conditions present today. Densest WMDW were formed during most of Marine Isotopic Stage (MIS) 2 and during the D–O Stadials not associated with HEs, while lightest WMDW dominated during D–O Interstadials. The δ18Odw record shows a D–O variability pattern likely controlled by changes in the composition and intensity of the local run-off and also to changes in the δ18Ow signal of the Atlantic inflow. Changes in the residence time of the Mediterranean waters, governed by the global sea level, are also considered to exert an important role governing Mediterranean δ18Ow and salinity, particularly during MIS 2. Overall, our results are consistent with the formation of dense WMDW during D–O stadials and even denser during most of MIS 2.  相似文献   

9.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
《Quaternary Science Reviews》2007,26(15-16):1927-1950
In order to compare environmental and inferred climatic change during the Preboreal in The Netherlands, five terrestrial records were analysed. Detailed multi-proxy analyses including microfossils (e.g., pollen, spores, algae, and fungal spores), macroremains (e.g., seeds, fruits, wood, mosses, etc.), and loss on ignition measurements were carried out with high temporal resolution. To link the five Preboreal records, accurate chronologies were produced by AMS 14C wiggle-match dating. The Dutch records show that following the Lateglacial/Holocene climate warming, birch woodlands expanded between 11,530 and 11,500 cal BP during the Friesland Phase of the Preboreal. After the Friesland Phase, two distinct climatic shifts could be inferred: (1) around 11,430–11,350 cal BP the expansion of birch forests was interrupted by a dry continental phase with open grassland vegetation, the Rammelbeek Phase. This phase was coeval with the coldest part of the Preboreal oscillation (PBO) as observed in the δ18O record of the Greenland ice-core records and has been attributed to a large meltwater flux that resulted in a temporary decrease of the thermohaline circulation in the North Atlantic. (2) At the start of the Late Preboreal, between 11,270 and 11,210 cal BP, a sudden shift to a more humid climate occurred and birch forests expanded again. A simultaneous increase in the cosmogenic nuclides 14C and 10Be suggests that these changes in climate and vegetation were forced by a sudden decline in solar activity. Expansion of pine occurred during the later part of the Late Preboreal. At the onset of the Boreal, between 10,770 and 10,700 cal BP, dense woodlands with hazel, oak, elm and pine started to develop in The Netherlands.  相似文献   

11.
Questions remain as to the nature of climatic change through the last glacial–interglacial transition in the eastern Mediterranean region, particularly the relative contribution of evaporation and precipitation to regional water balance. Here changes in oxygen isotope values through this time period from Eski Acıgöl, a crater lake in central Turkey, are investigated using hydrological and isotope mass balance models. These allow changes in evaporation and precipitation to be quantified and their relative importance evaluated. We show that it is the volumetric flux rate of water passing through the lake system and not the precipitation-to-evaporation ratio per se which controlled the stable isotope record in Eski Acıgöl. Early Holocene precipitation is shown to be much greater than that during both the latter part of the last glaciation and the present day. We test these calculated values against other records in the same region, firstly with other lake records in Anatolia, the Konya basin and Lake Van, and secondly with isotope-inferred palaeo-precipitation data from Soreq cave in Israel. This reveals a contrast between pre- and post-LGM precipitation values in Turkey (wetter and drier, respectively) and also suggests that during the last glacial–interglacial transition there was a more marked precipitation gradient than at present between northern/interior and southern/coastal parts of the eastern Mediterranean region.  相似文献   

12.
To understand Holocene climatic development and to determine drivers of climatic changes and climate variability, high-resolution marine proxy records are required from key oceanic locations. However, information on the Holocene climate development from the Southern Hemisphere is still rare and mainly based on terrestrial archives. Here, we present data with a high-resolution of circa 35 years from sediment cores taken east of the Great Australian Bight, where it is possible to determine Southern Ocean Holocene climate and the longer-term trends of the El Niño–Southern Oscillation (ENSO) conditions. For this purpose, we used the oxygen-isotope records of two planktonic foraminifer species Globigerinoides ruber and Globigerina bulloides which inhabit different water masses as well as faunal counts of planktonic foraminifers. After the ocean frontal systems off southern Australia were pushed northward by orbitally-forced insolation changes during the early Holocene, the data indicate increasing ENSO variability during the mid to late Holocene when the fronts shifted polewards again. A strong circa 1550 year cycle is found in the Globigerina bulloides record which reflects the wider Southern Ocean signal with prominent cold phases centred at circa 9.2, 7.3, 5.8, 4.3, 2.7, 1.4 ka BP and, possibly the Little Ice Age, which have global counterparts.  相似文献   

13.
《Quaternary Science Reviews》2007,26(13-14):1736-1758
This paper presents a high-resolution lake-level record for the Holocene at Lake Accesa (Tuscany, north-central Italy) based on a range of sedimentological techniques validated in previous studies, with a chronology derived from 43 radiocarbon dates and four tephra layers. It gives evidence of centennial-scale fluctuations with major highstands at ca 11 500, 11 100, 10 200, 9400, 8200, 7300, 6200, 5700–5200, 4850, 4200, 3400, 2600, 1200 and 400 cal BP. Except for the Early Holocene until ca 10 500 cal BP, this pattern of hydrological changes appears to be in agreement with the regional pattern established for west-central Europe. Correlations with the Preboreal oscillation and the 8.2 ka event as well as with the atmospheric 14C residual series suggest that lake-level fluctuations developed at Accesa in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity. For the period after 4500 cal BP, correlations with other palaeohydrological records from central Italy indicate that lake-level changes reconstructed at Accesa were mainly driven by climatic variations while anthropic activities and local geomorphological factors only played a secondary role. The Accesa lake-level record also highlights millennial-scale variations with a maximal lowstand at ca 9200–7700 cal BP contemporaneous with Sapropel event 1 in the Mediterranean. It was followed by generally higher lake-level conditions. This appears to be the opposite of that observed in Sicily (southern Italy) where a lake-level maximum developed at ca 9000–8200 cal BP and was followed by a general trend towards aridification. These opposite patterns were interpreted as contrasting hydrological responses to orbitally induced changes in summer insolation. This interpretation has to be tested by further lake-level studies in the central Mediterranean region. Finally, correlations between major lowstands and periods of maximal representation of Quercus ilex point to convergences between climate oscillations and Holocene vegetation history in the Accesa region. However, the maximal representation of Abies during the first half of the Holocene, including a time window where lake level reached a minimal level, suggests a more subtle impact of seasonality processes.  相似文献   

14.
This paper presents biostratigraphical and stable isotope data obtained from core CM92–43, which was recovered from the central Adriatic as part of a comprehensive investigation of the palaeoenvironmental history of the basin. The data span the period of the Last Glacial–Holocene (LG–H) transition (ca. 18000 to 8000 GRIP ice-core yr BP). Regional biozones are defined on the basis of characteristic assemblages of planktic Foraminifera, and these are compared with other foraminiferal biostratigraphical schemes from the southern Adriatic and the Tyrrhenian Sea. Variations in relative abundance of selected planktic Foraminifera and in selected pollen types are shown alongside variations in δ18O and δ13C obtained from Globigerina bulloides and relative abundance of Globigerinoides ex. gr. ruber. The data are compared with the GRIP ice-core record and the event stratigraphy scheme based on this record, and it is concluded that the climate forcing mechanisms that controlled climate variations in the North Atlantic region during the LG–H transition also extended their influence into the Mediterranean region over the same period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
This review summarizes forefield and lacustrine records of glacier fluctuations in Alaska during the Holocene. Following retreat from latest Pleistocene advances, valley glaciers with land-based termini were in retracted positions during the early to middle Holocene. Neoglaciation began in some areas by 4.0 ka and major advances were underway by 3.0 ka, with perhaps two distinct early Neoglacial expansions centered respectively on 3.3–2.9 and 2.2–2.0 ka. Tree-ring cross-dates of glacially killed trees at two termini in southern Alaska show a major advance in the AD 550s–720s. The subsequent Little Ice Age (LIA) expansion was underway in the AD 1180s–1320s and culminated with two advance phases respectively in the 1540s–1710s and in the 1810s–1880s. The LIA advance was the largest Holocene expansion in southern Alaska, although older late Holocene moraines are preserved on many forefields in northern and interior Alaska.Tidewater glaciers around the rim of the Gulf of Alaska have made major advances throughout the Holocene. Expansions were often asynchronous with neighboring termini and spanned both warm and cool intervals, suggesting that non-climatic factors were important in forcing these advances. However, climatic warming appears to have initiated most rapid iceberg-calving retreats. Large glaciers terminating on the forelands around the Gulf of Alaska may have had tidewater termini early in the Holocene, but have progressively become isolated from the adjacent ocean by the accumulation and subaerial exposure of their own sediments.  相似文献   

16.
Current high‐resolution palaeoenvironmental records reveal short‐term Holocene coolings. One of these major Holocene rapid climate changes occurred between 3.2 and 2.7 cal. ka BP. The sensitivity of river systems vis‐à‐vis slight and short‐term Holocene climatic variations is a subject of controversy in the scientific community. In this paper, we present a 4.0 to 1.4 cal ka BP palaeoflood record from the Lower Moulouya River (northeastern Morocco) to demonstrate the high sensitivity of semiarid rivers in the southwestern Mediterranean towards Holocene environmental changes. The Lower Moulouya flood deposits are characterised by thick, well‐stratified, predominantly clayey to silty overbank fine sediments. These cohesive sediments show evidence of excellent preservation conditions against fluvial erosion and contain a continuous record of mid to late Holocene flood sequences. The Moulouya palaeoflood record can be interpreted in the context of regional and global high‐resolution proxy data, revealing a strong coupling with Holocene rapid climate changes. The centennial‐scale Moulouya palaeohydrological history will be discussed with palaeoenvironmental data from the same record (palaeomagnetics, sedimentary charcoal record, anthracological analyses, snail analyses) to generate new ideas about the mid to late Holocene hydrological cycle in the southwestern Mediterranean. The deduced features of pronounced Lower Moulouya flooding and the decreased fire recurrence during Holocene cooling remain somewhat inconsistent with the interpretation of other palaeohydrological and paleaoecological records from the southwestern Mediterranean. However, enhanced Lower Moulouya flood frequencies between 3.2 and 2.7 cal. ka BP agree with increased floodplain aggradation in other major river systems of Mediterranean North Africa. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Millennial-scale climatic variations have punctuated the Holocene characterised by abrupt changes from warm to cool or wetter to drier conditions. Amongst these climatic events, there is increased evidence for an abrupt multicentennial shift of climatic conditions around 3.8/3.7 kyr BP (4.1 cal. kyr BP) in mid- to low-latitude regions which had a profound impact on landscape and population migration. In the Mediterranean region, subtropical, tropical and equatorial Africa, a number of continental proxies (lake-levels, pollen sequences, stable isotopes) record this abrupt change towards drier conditions. However, regionalism in climatic conditions is reflected in the vegetation records, possibly in relation to orographic conditions and the influence of sea-surface conditions. Hitherto there have been very few marine sequences that record this particular climatic shift at high-resolution. We present here new data from the Congo deep-sea fan containing integrated marine and terrestrial proxies. Around 5–4 cal. kyr BP, shifts in surface conditions off the Congo River mouth are observed, with possible establishment of seasonal coastal upwelling, and lower sea-surface temperatures. In parallel, pollen data indicate fluctuations of herbaceous, afromontane taxa and charred grass cuticles, suggesting more open vegetation in the lowland regions and an increase in cloud forest and/or afromontane vegetation at higher altitudes within the Congolese region.  相似文献   

18.
The Mediterranean climate and its variability depend on global-scale climate patterns. Close correlations appear when comparing Holocene palaeoenvironmental data (lake levels, fluvial activity, Mediterranean surface temperature and salinity, marine sedimentation) with the main stages of the history of the circum-Mediterranean vegetation. They indicate an evolution of the Mediterranean biome controlled by the climate and emphasize the teleconnections between the climate of the Mediterranean area and the global climatic system. In the circum-Mediterranean area, the Holocene can be divided into three periods: a lower humid Holocene (11 500–7000 cal BP) interrupted by dry episodes; a transition phase (7000–5500 cal BP) during which occurred a decrease in insolation as well as the installation of the present atmosphere circulation in the northern hemisphere; and an upper Holocene (5500 cal BP—present) characterized by an aridification process. Throughout the Holocene, humans used and modified more or less strongly the environment but the climatic changes were the determining factors of the evolution of the Mediterranean biome. Societies had to adapt to natural environmental variations, their impact on the environment increasing the ecological consequences of the global changes.  相似文献   

19.
A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae,Cecropia,Melastomataceae/Combretaceae,Acalypha, Alchornea,Fabaceae,Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,andWettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation ofZea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.  相似文献   

20.
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号