首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
大地测量学的发展,要求能够精确推得大地水准面高(N),为此,在阐述顾及扰动重力垂直梯度的大地水准面与似大地水准面(ξ)之差的公式基础上,对它们在三种模型上进行了数值计算和检核。结果表明,该公式的精度是相当高的,由此可以将正常高化算为正高(海拔高)。  相似文献   

2.
关于重力勘查的高度改正应采用何种高程系统的讨论   总被引:1,自引:0,他引:1  
重力勘查的观测值必须进行正常场与高度改正,为此要测量重力测点的平面位置与高程,尤其对高程测量精度要求甚严。以前测地工作使用经纬仪、水准仪和测距仪等,高程系统按“规范”(1)采用大地水准面的“正高系统”.近来全球卫星定位系统(GPS)开始应用于重力勘查中,GPS测量的高程为WGS-84的“大地高系统”,这样需要把“大地高”换算到“正高”.这样做即要花费许多工作量,又会增加换算中产生的误差。本文通过对地球正常重力场理论公式的分析,认为可以采用GPS测量的大地高进行重力高度改正。  相似文献   

3.
GPS求得的高程是地面点在WGS84坐标系中的大地高,而我国采用正常高系统的高程,是通过该点的大地高减去该点的高程异常获得。高程异常的获取,惯用的做法是曲面拟合法,这种方法在水准点稀少的测区(特别是山区)实施起来比较困难。EGM2008模型是迄今为止分辨率最高、精度最好、阶次最多的全球重力场模型。首先利用EGM20081′×1′的大地水准面模型计算各点的高程异常,再通过联测一个一等水准点,获取EGM2008模型所表示的全球似大地水准面与我国高程基准面之间的差异,即可将GPS大地高转换为1985国家高程基准的正常高。兴城测区实例表明,EGM2008模型高程转换法在山区仅用一个水准点即可实现GPS大地高到正常高的转换,且高效率、高精度。  相似文献   

4.
岩溶断陷盆地不同海拔植物水分利用效率分析   总被引:1,自引:0,他引:1  
为探讨不同海拔高度的养分、环境要素与植物水分利用效率变化的关系,以岩溶断陷盆地云南小江流域的乔木、灌木、草本为研究对象,分析水分利用效率和叶片养分浓度随海拔的变化情况。结果表明:(1)研究区内海拔2 000 m处的草本植物的叶片δ13C值最高,2 200 m处的乔木的叶片δ13C值最低;(2)海拔高度对乔木、灌木的植物水分利用效率影响大于草本植物,草本植物的水分利用效率随海拔高度的变化甚微,两者之间的拟合度较小;高值区出现在海拔为2 200 m处的乔木;低值区出现在海拔为2 000 m处的草本植物;(3)不同海拔水分利用效率与叶片N、P浓度的相关性较弱(与叶片的N浓度呈弱正相关,与叶片的P浓度呈弱负相关);(4)不同海拔水分利用效率与各气候因子的相关性较弱,与多年平均气温、多年平均降雨量、多年平均日照时数均呈弱正相关。   相似文献   

5.
针对目前油气勘探开发中应采用哪一个系统的高程问题, 进一步做了论证和说明, 并指出用大地高代替高程的看法是不对的;还介绍测定正常高或正高的新手段和新方法。该方法可以充分发挥油气勘探中重力数据的作用, 使正常高和重力异常能以很高精度一并地确定出来, 如此可满足油气勘探的需要。  相似文献   

6.
利用压力资料预测油(气)水界面方法的修正   总被引:2,自引:0,他引:2  
周文  王允诚 《矿物岩石》1993,13(4):100-104
文章在充分研究了原有压力法计算油(气)水界面海拔公式中存在的缺陷后,指出应引入含水饱和度参数对公式进行修正。修正后的公式所计算的油(气)水界面海拔值与实际值更接近,而且还能得出不同的含水饱和度界面海拔值。这由两个实际气藏的应用得到验证。  相似文献   

7.
近年来的水利水电建设和土地开发利用等,已经明显地改变了我国许多流域的产汇流条件.因此迫切需要发展从暴雨资料来推求设计洪水的途径。现行的计算程序是先拟定一次符合设计标准的设计暴雨过程,再推求该暴雨所形成的洪水过程。它实质上是假定流域产汇流系统的输入项(暴雨过程 H(t))和输出项  相似文献   

8.
广东三水盆地天然气非烃组分同位素地球化学   总被引:1,自引:0,他引:1  
根据广东省三水盆地天然气中氦、氩、二氧化碳和氮等非烃组分的稳定同位素地球化学特征,探讨了该区天然气的来源以及大地热流。测得天然气中3He/4He(R)值为(1.60-6.36)×10-6,比大气的3Ne/4He(Ra)值(1.4×10-6)大:氩的稳定同位素组成(40Ar/36Ar=450-841)较大气氩富40Ar;二氧化碳的δ13C(PDB)值在-20-2‰的范围内,δ13N(Air)值在-57-+95‰之间:根据(?)He,4He值求得研究区的大地热流值(Q)为72-82mWm-2。大地热流和非烃组分同位素组成的高值以及研究区特别发育的火山岩等地质资料表明三水盆地有较强的地球深部流体(物质的和热的)向上溢出。一些油气藏中相当一部分氦、氩和氮来自地幔,各种天然气中均混有地壳来源的非烃气体。贫13C的二氧化碳气主要为地层中有机质分解的产物;富13C的二氧化碳则主要来自岩石化学反应的产物,并混有深部来源的二氧化碳。相当一部分大地热流源于上地幔。  相似文献   

9.
Ananga  N 牛雪峰 《世界地质》1997,16(1):97-100
在日本Port岛应用全球定位系统(GPS)进行了椭球面高的测量工作。通过GPS获取的椭球面高hGPS以及水准测量获得的正高hLcvcling测试了GPS和重力测量在工作区获得正高的能力.以便后来评价海平面的起伏。该重力测量成果是覆盖0.1°×0.1°范围内的6241个空间重力异常点,重力异常值面△g从日本重力数据库搜集,选择的区域由天文经纬度表示,即:34.651°≤≤34.661°,135.212°≤λ≤135.227°,那里有足够数据用于评价大地水准面差距△N。尽管在I’ort岛某些工作区内稀少的重力数据覆盖也能获得小于或等于10×10-6m精度的结果,但是这样的精度仍然不足以用于高精度的应用,比如海水面形态的确定等。应用不同的地球重力位模型(OSU89A,OSU89B,GPM2F)对全部重力测量结果进行比较,在电算化时代的研究室是可行的。当使用OSU89A作为参照模型时,重力测量所得△N的变化范围由-2.2~16.7cm.它们与△NGPS/Lcvcling进行了适当的对比。  相似文献   

10.
广东从化佛冈(主体)黑云母花岗岩定年和成因   总被引:45,自引:3,他引:45  
佛冈黑云母花岗岩是大型东西走向的佛冈花岗质杂岩体的主体部分、占杂岩体面积的85%。粗等粒或巨晶斑状结构。由黑云母(2-6%),石英(35-41%),斜长石(An10-23,10-18%)和微纹长石(36-48%)组成,系黑云母花岗岩。黑云母具有低的Mg/(Mg+Fe)值(0.17-0.21)。据全岩-矿物Rb-Sr等时线定年其定位年龄为167.5±7.5Ma,MSWD为2.4(中侏罗世晚期)。在岩石化学成分上为富硅(SiO2在71.74-77.64%),中等过铝质(A/NKC平均为1.056),钼碱性-弱亚碱性(NK/A平均为0.797),相对富K2O(K2O/Na2O为1.66)。在微量元素和稀土元素组成方面,显示Nb亏损,具有低Nb/Ta值(平均5.94),高Rb/Sr(1.98-41.71),Rb/Nb(11-23)和K/Nb(1498-2976值);中-强Eu亏损(Eu/Eu在0.12-0.46);高的(La/Sm)N值(1.67-5.39)等。在Sr,Nd,Pb,O同位素组成上,具有高的Isr值(0.7116±0.0023)和εSr(t)值(96-103);低的εNd(t)值(-6.19--8.93)。据模拟计算,其源区岩石中华南上壳端元约占66-69%,高的^207Pb/^204Pb(15.734)和^206Pb/^204Pb值(18.962-19.049)位于铅构造模式图的上壳演化线域内,高δ^18O‰(+9.3-+12.5)等。以上数据表明佛冈黑云母花岗岩系该区中-下地壳层次的源岩部分熔融而成,与华南S型花岗岩有相似之处。古太平洋板块(向西)与欧亚板块和菲律宾地块(向北)与南中国-印支地块的岩石圈消减作用导致的玄武岩底侵,对黑云母花岗岩的形成有一定的贡献。  相似文献   

11.
Whilst satellite radar altimetry has been widely utilised over both ocean and ice surfaces for topographic mapping, applications over land have received relatively little attention. This is in part due to the complex nature of echoes returned from rapidly varying topographic land surfaces, which can cause an altimeter to generate erroneous range estimates. One approach to improving these data is to retrack using a single retracker, and construct a spatial average of heights obtained to give an estimate of mean orthometric height. This paper presents results obtained using an alternative approach: reprocessing returns at all levels of complexity through an expert system, which chooses one from a series of ten reprocessing algorithms based on an analysis of the return waveform shape. The selected algorithm then recalculates the range to surface, and hence derives an orthometric height. Utilising this approach with the geodetic mission dataset from ERS-1 has generated over 100 million height points with a near-global distribution. This paper presents selected results from this research using ERS-1 geodetic mission data together with ERS-1 and ERS-2 35 day data to demonstrate the accuracy to which orthometric heights can be determined, using global crossover analysis and comparison with ground truth. The paper illustrates applications of these data including validation and error correction of Digital Elevation Models, and discusses use and limitations of direct mapping with altimetry.  相似文献   

12.
The generation of a near-global set of orthometric height data derived from satellite altimetry has allowed for the first time an independent evaluation of the accuracy of existing Global Digital Elevation Models (GDEMs) on a near-global scale. This paper presents results from an intercomparison of GLOBE v1, GLOBE β and JGP95E with altimeter based datasets derived from the ERS-1 geodetic mission, together with ERS-1 and ERS-2 35 day data.One result of this research is the identification of common error signatures, where correlated height differences are seen to exist between the altimeter data and several of the DEMs. The ability to identify such erroneous ground truth data using altimetry facilitates the improvement of these global and regional models. Having targetted regions where the height data are inaccurate, it enables examination of these data for mis-registration and reference datum errors, which can then be corrected using altimetry derived heights.  相似文献   

13.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

14.
油田地热资源评价研究新进展   总被引:4,自引:0,他引:4       下载免费PDF全文
油田地热资源评价和开发利用一直是我国陆上沉积盆地内中-低温水热型地热资源研究的重点工作。本文介绍了油田地热资源评价的基本思路和评价方法,并以大庆油田、华北油田和辽河油田为例,通过地温场研究、热储特征分析、岩石热物性测试,按照新建立的油田地热资源评价分级体系,重新评价了油田区的地热资源量。3大油田区11个层系地质资源总量为10 934×1018 J,地热水资源量为86 607×108 m3,其中,可采水资源量为19 322×108 m3,可采地热能资源为425×1018 J。根据油田采出水和综合利用等5种开发利用方式,评估了油田地热能开发潜力,为我国地热资源评价和油田地热规模化开发奠定了基础。  相似文献   

15.
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.  相似文献   

16.
区域重力调查中,GPS高程测量的精度直接影响重力测量成果的精度.用国内最新研制的测绘科技成果--CQG2000似大地水准面模型,对GPS测得的大地高程进行改算,可得到较高精度的正常高成果.方法应用于青海三江流域1:20万区域重力调查工作中,取得了较好的效果.  相似文献   

17.
区域重力调查中,测点正常高的精度直接影响重力测量成果的精度。利用CQG2000似大地水准面模型对GPS测得的大地高程进行改算,可得到较高精度的正常高成果。然而,CQG2000似大地水准面模型在不同地区的精度和分辨率是不同的,在青藏高原地区精度相对差些。通过对CQG2000似大地水准面模型在青藏高原地区精度的实地检验,证实其在该地区的精度可以满足1:20万区域重力调查工作中求取测点正常高的精度需要。通过上述实验,总结出用CQG2000模型提高区域重力调查中GPS高程测量精度的方法,对区域重力调查工作有重要意义。  相似文献   

18.
In Geodesy, the heights of points are normally orthometric heights measured above the geoid (an equipotential surface created by the earth masses and rotation which approximately coincides with the mean sea level) or the normal heights. It is necessary to transform the GNSS/GPS measured ellipsoidal heights (h) to classical physical heights (orthometric H/Normal H). The total gravity potential of the earth (W) is the summation of two components; gravitational potential (V) by earth masses and the centrifugal potential (Ω). The centrifugal potential is directly calculated, while the gravitational potential (V) needs to be modeled globally or locally using given measurements. The global models of the earth gravitational potential/gravity models (or so-called geoid models) are mostly given using spherical harmonics (SH). A modified approach of SH was defined to fit the use of SH for regional gravity/potential modeling called spherical cap harmonics (SCH). Due to the numerical difficulties of SCH, a simplified approach of SCH is selected to be used for a combined modeling of the earth potential using a variety of observations. This approach is called the Adjusted Spherical Cap harmonics.  相似文献   

19.
河流扇是陆相盆地中近年来日益受到重视的一种新沉积模式,其主要形成于干旱气候环境中。该文阐述了河流扇的概念演变与发展由来、沉积特征、鉴别标志与控砂机理等,讨论了河流扇与分支河流体系、末端扇及浅水三角洲等相关概念之间的区别与联系,认为河流扇形成主要受“分支型”河道控制,而末端扇及浅水三角洲主要受“分流型”河道控制。在对鄂尔多斯盆地晚三叠世古气候环境深入分析的基础上,运用河流扇概念对延长组“满盆砂”形成机制进行了重新解释。主要结论是:1)延长组沉积时期,古气候具有三分性——早期为干旱环境,中期为湿润环境,晚期再次转变为半干旱—半湿润环境;2)在干旱气候环境下,缺少大面积汇水区,以洪水搬运—事件沉积作用为主,形成了别具特色的河流扇体系,这可能是造成延长组“满盆砂”的主要原因之一;3)干旱环境河流扇砂体与潮湿环境水进域富含有机质泥岩相匹配,有利于形成大型岩性油气藏,从而使延长组由“满盆含砂”变为“满盆含油”。该研究改变了以往大型坳陷湖盆以“三角洲模式”为主导的传统认识,对丰富发展我国陆相盆地沉积理论认识及指导油气勘探实践均有积极意义。  相似文献   

20.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号