首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

2.
基于非结构网格半隐式跨尺度海洋模式(semi-implicit cross-scale hydroscience integrated system model,SCHISM),作者采用非结构三角网格,对全球大洋潮波进行数值模拟。通过调和分析,将196个潮位站的实测数据与模拟结果进行比较验证,两者符合良好,M2、K1分潮同潮图的形态也与TPXO8、FES2014b和NAO.99b模型给出的相似。根据模拟结果,给出了M2、S2、K1、O14个主要分潮的同潮图。结果表明,太平洋中存在8个M2分潮无潮点,大西洋中存在4个M2分潮无潮点,印度洋中存在3个M2分潮无潮点。总体上来说,M2分潮在北太平洋和北大西洋东岸附近海域的振幅大于西岸附近海域的振幅,而在南太平洋和南大西洋情况相反。S2分潮分布特征与M2分潮类似,但振幅较小。太平洋中存在5个K1分潮无潮点,大西洋中存在3个K1分潮无潮点,印度洋中存在2个K1分潮无潮点。K1分潮的振幅普遍较小,在大部分海域不超过30 cm,在北太平洋和南极洲附近海域,由大洋向近岸有增加的趋势。太平洋中存在4个O1分潮无潮点,大西洋和印度洋中各存在2个无潮点。O1分潮在大部分海域不超过20 cm,在北太平洋和南极洲附近海域,由大洋向近岸有增加的趋势。最后,讨论了本模型与对比模型之间误差存在的原因。  相似文献   

3.
西北太平洋的一种潮汐数值同化模型   总被引:1,自引:1,他引:0  
利用FVCOM海洋数值模式,在球坐标系统下考虑非线性效应和天体引潮力的影响,基于非结构的三角形网格建立了包括中国近海、日本海、鄂霍次科海和部分西北太平洋海域的高分辨率海洋潮汐数值模型,并采用趋近法同化84个沿岸验潮站的观测资料。模拟结果与175个验潮站的实测结果拟合良好,M2,S2,K1,O1四个主要分潮振幅和迟角的绝对平均误差分别为4.0 cm和5.6°,2.4 cm和7.5°,2.6 cm和6.3°,1.5 cm和5.0°。依据调和分析结果给出了4个主要分潮的同潮图分布,得到8个半日分潮和5个全日分潮的无潮点,证实了宗谷海峡全日潮无潮点的存在,首次模拟得到津轻海峡的全日潮无潮点;还给出了整个计算海域内最大可能潮差和潮汐余水位的分布特征。  相似文献   

4.
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.  相似文献   

5.
Employing harmonic analysis of tidal data in the Taiwan Strait, the cross-strait tidal characteristics are completely illustrated. Based on the two dimensional mild-slope equation which can be reduced to the shallow-water wave equation, a finite element model (Tsay et al., 1989) is applied to investigate the characteristics of tides in the Taiwan Strait. The co-range and equi-phase charts of major tidal constituents, such as M2, S2, N2, and K1, are reproduced. Anomalous amplification of semidiurnal tides in the Taiwan Strait is verified. With rotation effects neglected and by applying a non-reflective condition on the open boundaries, the numerical results of phase-lag and co-range distributions show very good agreement with observed data for semidiurnal tides in the Taiwan Strait. Due to crude representation of the topography at two ends along the China coast, computed tidal distributions deviate from the observations. However, both computed amplitudes and phase-lags compare very well with observed data along the central half of the China coast.  相似文献   

6.
During 1999–2000, 13 bottom mounted acoustic Doppler current profilers (ADCPs) and 12 wave/tide gauges were deployed along two lines across the Korea/Tsushima Strait, providing long-term measurements of currents and bottom pressure. Tidally analyzed velocity and pressure data from the moorings are used in conjunction with other moored ADCPs, coastal tide gauge measurements, and altimeter measurements in a linear barotropic data assimilation model. The model fits the vertically averaged data to the linear shallow water equations in a least-squares sense by only adjusting the incoming gravity waves along the boundaries. Model predictions are made for the O1, P1, K1, μ2, N2, M2, S2, and K2 tides. An extensive analysis of the accuracy of the M2 surface-height predictions suggests that for broad regions near the mooring lines and in the Jeju Strait the amplitude prediction errors are less than 0.5 cm. Elsewhere, the analysis suggests that errors range from 1 to 4 cm with the exception of small regions where the tides are not well determined by the dataset. The errors in the model predictions are primarily caused by bias error in the model’s physics, numerics, and/or parameterization as opposed to random errors in the observational data. In the model predictions, the highest ranges in sea level height occur for tidal constituents M2, S2, K1, O1, and N2, with the highest magnitudes of tidal velocities occurring for M2, K1, S2, and O1. The tides exhibit a complex structure in which diurnal constituents have higher currents relative to their sea level height ranges than semi-diurnal constituents.  相似文献   

7.
南麂岛附近海域潮汐和潮流的特征   总被引:4,自引:2,他引:2  
以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征。水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大。水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3m,最大可能潮差大于6m,潮汐呈现出显著的低潮日不等和回归潮特征。流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著。流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48m/s之间,全日分潮流均很弱,最大流速小于0.06m/s。M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30min。潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性。  相似文献   

8.
By compiling all the tidal data gathered from island-wide results of simple harmonic analysis, anomalous amplifications of semidiurnal tides along the western coast of Taiwan are illustrated. The mechanisms are investigated both theoretically and numerically by applying the linear shallow-water wave equations. Waves trapped by a continental shelf and resonance of tidal co-oscillation are identified theoretically. Numerically, a two-dimensional finite element model is applied to real topography for tidal computations. The co-range and equi-phase charts of three main semidiurnal constituents (M2, S2, and N2) and one diurnal constituent K1 are calculated. Anomalous amplifications of semidiurnal tides that appear as partially standing waves are demonstrated.  相似文献   

9.
The distribution of amplitude and phase for eight ocean tidal constituents (M2, S2, N2, K2, K1, O1, P1, Q1) is presented as tidal maps for the New Zealand area. The distribution was calculated using a barotropic tidal model driven by TOPEX/ Poseidon data on the outer ocean boundaries. The maps exhibit the known features of the tides in this area such as a complete rotation of the semi‐diurnal tides around New Zealand and the reduced spring‐neap variations on the east coast. They also point out several new features for which there are few or no observations, such as diurnal trapped waves and shelf waves. A comparison of the model results with observations shows that sea level errors are within 0.1 m in amplitude and 10° in phase for the largest constituents at all locations, including sites where the data are of low quality and where the geometry is not adequately resolved. For locations where the geometry is adequately represented and the observations are of high quality, sea level errors are within 0.02 m in amplitude and 7° in phase. These results represent the most accurate and highest resolution calculations of tides and currents yet attained for this area.  相似文献   

10.
马静怡  徐永生 《海洋与湖沼》2018,49(6):1169-1177
吕宋海峡由于剧烈变化的地形成为内潮产生的源地,内潮是海洋混合的重要原因。为了认知南海的内潮能通量分布,对南海的内潮有更好的理解,本文利用21世纪以来发射的多颗高度计卫星:J2、J1T、GFO以及EN,提取了吕宋海峡附近内潮的能通量。研究使用了调和分析和高通滤波等方法来提取第一模态内潮,主要提取K_1,K_2,M_2,N_2,O_1,P_1,Q_1和S_2八个分潮。同时结合WOA数据对能通量进行计算。结果表明,目标区域潮汐以全日分潮为主,所选区域的全日分潮中K_1所占比例最大;半日分潮中M_2分潮最强,而内潮的能通量则是M_2分潮所占最大,在吕宋海峡区域M_2能通量为6.45GW。内潮主要产生在地形变化剧烈的地方,海域的大部分地区内潮能量很小。在吕宋海峡中部,全日分潮能通量要小于南部地区,而半日分潮则有较大值。  相似文献   

11.
Current measurements were conducted 10 m below the sea surface near the head of Suruga Bay intermittently from 1970 to 1978. The circulation pattern is usually counterclockwise; northward along the east coast (off Heda and at the mouth of Uchiura Inlet), westward along the north coast (off Fuji), and southwestward along the west coast (off Shimizu). The amplitudes of the four major tidal constituents of current variation, M2, S2, K1 and O1, are much larger than those expected from sea level variations along the coast. The amplitudes of the diurnal constituents of current variation are much larger than those of the semidiurnal constituents, while the amplitudes of the semidiurnal constituents of sea level variation are much larger than those of the diurnal constituents. The observed amplitude of the predominant diurnal constituents exhibit large seasonal changes and tend to increase with the development of the stratification of the upper part of the water in Suruga Bay. These facts strongly suggest that the observed current variations are mainly associated with internal tides in Suruga Bay.  相似文献   

12.
Clockwise phase propagation of semi-diurnal tides in the Gulf of Thailand   总被引:2,自引:0,他引:2  
The phase of semi-diurnal tides (M2 and S2) propagates clockwise in the central part of the Gulf of Thailand, although that of the diurnal tides (K1, O1 and P1) is counterclock-wise. The mechanism of clockwise phase propagation of semi-diurnal tides at the Gulf of Thailand in the northern hemisphere is examined using a simple numerical model. The natural oscillation period of the whole Gulf of Thailand is near the semi-diurnal period and the direction of its phase propagation is clockwise, mainly due to the propagation direction of the large amplitude part of the incoming semi-diurnal tidal wave from the South China Sea. A simplified basin model with bottom slope and Coriolis force well reproduces the co-tidal and co-range charts of M2 tide in the Gulf of Thailand.  相似文献   

13.
The global distributions of eight principal tidal constituents, M2 , S2 , K1 , O1 , N2 , K2 , P1 , and Q1 , are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30 S and 30 N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2 , S2 , K1 , O1 , N2 , P1 , K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.  相似文献   

14.
The systems of diurnal tidal wave (K1) and semi-diurnal tidal wave (M2) in the Beibu Gulf are studied with numerical method. Also discussed in this paper are the influences of the Qiongzhou Strait, the bottom friction term, the horizontal turbulent friction term and the inertial (acceleration) term in dynamic equations on the tidal system. The calculated results show that there is an independent left-handed tidal system in the diurnal tidal wave of the gulf, the amphidromic point being roughly located at Taigeli Island; that the semi-diurnal wave constitutes no tidal system, generating a small tidal range in the region near Feizhulong Islands; and that the influence of the tidal wave from the strait on the tidal system of the K1 is not evident, but its effect on the system of the M2 component tide is quite obvious. The bottom friction term, the horizontal turbulent friction term, and the inertial term have effects upon the tidal system in the gulf.  相似文献   

15.
利用二维非线性潮波方程组,讨论了渤黄海主要分潮(全日潮、半日潮及浅水分潮) 数值模拟中的有关问题。数值模拟中同时考虑了4个主要分潮(M2,S2,K1,O1)和两个浅水分潮(M4,MS4)。分析表明,在渤黄海潮波系统数值模拟中,稳定后选取14 d的数值模拟结果进行调和分析能够取得最佳(最合理)的调和分析结果。计算出调和常数的模拟值与实测值之差的绝对平均值:M2分潮的振幅差为4cm,迟角差为3.3°,S2分潮的振幅差为2cm,迟角差为4.2°,K1 分潮的振幅差为1cm,迟角差为3.7°,O1分潮的振幅差为2 cm,迟角差为5.5°。实验结果较好地体现了渤黄海潮波系统的特征。  相似文献   

16.
泰国湾及邻近海域潮汐潮流的数值模拟   总被引:2,自引:0,他引:2  
本文基于FVCOM(Finite-Volume Coastal Ocean Model)模式,模拟了泰国湾及其周边海域K1、O1、M2和S2四个主要分潮。采用47个验潮站实测调和常数与模拟结果进行比较,所得4个分潮的均方差分别为4.06cm、3.76cm、8.22cm和4.71cm,符合良好。根据计算结果分析了泰国湾及其周边海域的潮汐、潮流的分布特征和潮波的传播特征。数值试验表明,现有的数字水深资料(ETOPO1,ETOPO5,DBDB-V)的准确度不足以合理地模拟泰国湾潮波。  相似文献   

17.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

18.
北部湾潮波数值研究   总被引:10,自引:1,他引:9  
利用普林斯顿海洋模式(POM08)建立了北部湾及其临近海区潮汐潮流数值模式,模拟了K1,O1,M2和S2这4个主要分潮,分析了模拟的潮汐和潮流分布特征,从潮波能量的角度讨论了琼州海峡对北部湾潮波系统的影响,并给出北部湾潮能的耗散情况。研究表明,北部湾是典型的全日潮海区,K1和O1分潮在南部湾口形成半个旋转潮波系统,无潮点位于越南顺安附近岸边。琼州海峡中的欧拉潮汐余流为西向流,潮余流造成的水通量约为0.034×106m3/s;余流出海峡西口后,先折向北,然后转向南流出湾外。研究海区中两个强潮流区分别位于琼州海峡和海南岛的西侧,同时这也是两个潮能的高耗散区。北部湾的潮能自南部湾口由外海传入,通过西口涌入琼州海峡,到达海峡东口时日潮波的能量已基本耗散殆尽,在海峡内耗散的4个分潮的潮能约为3.33 GW,相当于北部湾潮能耗散量的35%左右。数值试验表明,琼州海峡作为潮能耗散的重要海区,其存在对于北部湾潮波系统的形成具有较大影响。计算了底边界潮能耗散,结果表明在北部湾和琼州海峡,底边界耗散的潮能分别占该海区总耗散的83%和80%。  相似文献   

19.
大亚湾及其邻近海域冬、夏季各14个临时水位观测点1个月的实测潮位资料显示:各站的水位曲线均呈现明显的"双峰"现象,且湾顶比湾口更为明显。本文采用了调和分析方法,给出M_2、S_2、K_1、O_1四个主要分潮及M_4、M_6、2MS_6三个浅水分潮的振幅和迟角同潮图,分析大亚湾的主要潮汐特征,探讨了浅水分潮对双峰结构的贡献,并采用交叉谱分析对余水位与风的相关性进行了讨论。结果表明:(1)大亚湾海域各主要分潮振幅均由湾口向湾顶递增;高潮发生时间由湾口向湾顶推迟;涨潮历时均大于落潮历时;平均潮差在湾顶达到最大;(2)大亚湾内属于不正规半日潮,而考洲洋及其湾外海域则属于不正规全日潮;(3)大亚湾内浅水效应明显,从湾口至湾顶,六分之一日分潮的振幅呈5—7倍的增长,主导了大亚湾潮波系统的形变;(4)分潮重构结果显示,四分之一日和六分之一日浅水分潮(尤其是2MS_6分潮)的异常增长,是导致大亚湾潮汐双峰现象的主要原因;(5)冬季大亚湾内各点的余水位与风速呈现正相关,相关系数均在0.53以上;(6)周期为0.45—0.53 d的沿岸风对各站余水位的影响最大。  相似文献   

20.
渤海主要分潮的模拟及地形演变对潮波影响的数值研究   总被引:2,自引:0,他引:2  
基于FVCOM数值模式,利用1972年和2002年水深岸线数据,分别对渤海主要潮波系统进行模拟,研究了水深岸线变化对渤海主要分潮的影响。结果表明渤海地形演变会引起各分潮无潮点位置移动和振幅的改变,其中M2、S2分潮黄河口附近无潮点位置向东北方向迁移20km以上,且渤海湾湾顶振幅减弱,莱州湾内振幅增强;K1、O1分潮位于渤海海峡附近的无潮点亦向东北方向偏移,移动距离为10km左右,且渤海湾湾顶振幅明显减弱。在此基础上,本文通过敏感性数值实验,对导致黄河口外M2分潮无潮点位置移动的主要因素进行了初步分析。结果显示,在岸线不变的情况下,水深变化导致无潮点向东北方向迁移;而岸线变化导致无潮点向东南方向迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号