首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
臧志鹏  许振  邹星  侯静 《海洋工程》2023,41(4):114-126
以往的海底管道落锚撞击防护数值模拟主要为单一保护层模型,这里则针对块石+混凝土排垫复合方案建立模型并开展防护性能研究。基于ABAQUS建立有限元数值模型,模拟了落锚、海底管道、海床土体、块石层和混凝土排垫组成的复杂系统相互作用,研究了管道壁厚、内压,落锚质量和撞击速度等因素对管道应变极值和管体凹陷变形的影响。与单纯块石层保护方案相比,采用的块石+混凝土排垫方案具有更优良的防护效果。研究结果表明:在撞击点处,管道的轴向应变和环向应变均达到最大值,且随着与撞击点距离的增加沿管道轴向逐渐减小;撞击结束后,管道上仍然残留一定的塑性应变。随着管道壁厚的增加,管道的最大应变和凹陷深度也随之减小;随着内压的增加,管道上最大拉伸应变变大,而最大压缩应变和凹陷深度减小。随着落锚速度或者质量的增加,管道上最大应变和凹痕深度均变大;在相同动能情况下,管道上的最大应变和凹陷值基本相同,也表明落锚动能是影响管道变形响应的控制因素。本文研究成果可为海底管道防护方案设计提供科学依据。  相似文献   

2.
针对船舶抛锚、海洋平台坠物以及渔业拖网板对海底管线的撞击会造成损伤,本文采用非显式有限元法对其损伤程度进行了模拟。采用Drucker-Prager(DP)模型模拟海床,建立了坠物-管道-土体有限元模型,分析了坠物质量、形状、撞击速度、海床土体性质(弹性模量、内摩擦角、粘聚力)、埋深及拖网板撞击方式对海底管道塑性变形的影响。分析结果可以为管道的设计与防护工作提供科学依据,并且与现行规范进行了比较,本方法结果更加经济、合理。  相似文献   

3.
基于非线性有限元分析软件ANSYS/LS-DYNA建立海底悬空管道受坠物撞击的三维模型,考虑接触、摩擦和管土耦合作用,模拟海底悬空管道受坠物撞击的动态响应过程。通过大量的数值模拟,对比分析撞击能量、撞击角度以及坠物与管道间的摩擦对海底悬空管道受撞击部位凹陷损伤的影响。结果表明:管道受撞击部位的凹陷损伤随撞击能量的增大而变大;坠物撞击角度越大,管道受撞击部位的凹陷损伤越大;坠物与管道之间的摩擦使管道受撞击部位凹陷损伤略微增大,但影响很小。  相似文献   

4.
抛锚作业给跨航道海底管道带来的安全风险问题越来越引起人们的关注。为了加强海底管道防冲击能力、保障管道的安全运营,针对抛锚冲击作用下的管道埋深进行研究。通过建立小尺寸抛锚冲击管道实验平台,获得了冲击荷载作用下抛锚高度、管道埋深、堆石材质等参量对管道响应的影响。并基于正交实验原理,综合分析了不同参量对管道响应的敏感性。利用有限元法对抛锚冲击管道的过程进行瞬态动力分析,进一步研究了堆石材料力学特性对管道埋深的影响。结果表明:在冲击荷载作用下,堆石层的材料特性对冲击能量的耗散起着重要作用。通过将数值分析结果与实验数据作对比,并结合DNV规范中的能量计算方法,提出了抛锚冲击荷载作用下管道最小埋深的计算方法。研究成果为海底管道的安全铺设提供一定的理论指导。  相似文献   

5.
姜逢源  董胜 《海洋工程》2023,41(6):187-199
平台坠物、船舶抛锚等第三方活动引起的冲击损伤是近海管道失效的主要原因,时刻威胁中国海洋油气开发系统的安全性。为保障近海油气管道安全运行,围绕冲击荷载作用下管道损伤及失效评估这一中心问题,从管道损伤机理研究、含冲击损伤管道安全评估、管道工程项目风险评估3个方面总结了国内外研究发展现状,明确了影响结构安全的关键问题,并对未来研究工作提出建议。挖沟埋深为管道防护冲击损伤的有效手段,土体强度是防护效果关键因素,应重点关注土体强度空间变异性问题;管道冲击损伤主要为平滑凹陷和弯折凹陷,对于后者应进一步确定其在内压荷载下的剩余强度及疲劳强度;风险评估中失效判据对于结果有显著影响,需构建考虑多种安全性评估准则的失效判据体系。  相似文献   

6.
海底管道一旦受到坠物撞击损伤,会造成严重的环境污染及经济损失,为保证管道在运行期间的安全性,常对其进行埋深处理。对于有埋深的海底管道,坠物的撞击会造成管道上覆土体的大变形,在数值模拟中会导致网格畸变,甚至无法收敛。耦合欧拉-拉格朗日法(CEL法)可有效处理土体大变形问题,本文基于此方法建立了坠物-管道-土体有限元模型,分析了坠物撞击速度、质量、形状、海床土体性质(弹性模量、内摩擦角、黏聚力)、埋深对海底管道塑性变形的影响。结果表明,管道的凹痕深度随坠物撞击速度和质量的增加而增加;坠物与海床土体及管道接触面积越小,管道的凹痕深度越大;管道的埋置深度及海床土体的性质对吸收坠物的撞击能量有直接关系:海床土体的强度越高、埋深越大,管道所受到的损伤程度越小。分析结果可为管道的设计与防护工作提供科学依据,且与现行规范比较,本文方法更加经济、合理。  相似文献   

7.
面对通航区很可能发生的船舶抛锚、落物以及沉船等事故造成的危险,使用新型沉箱防护设施对水下生产系统进行安全防护,但目前撞击载荷下沉箱防护设施的安全评估标准并无明确界定。采用有限元方法对水下生产系统沉箱安全防护设施的撞击损伤进行了深入研究,考虑不同落物形状、下落速度、落物质量、碰撞位置对沉箱防护设施撞击损伤的影响。结果表明,锚、长方体落物对沉箱撞击最严重;撞击速度和落物质量与撞击应力成正比;对于非对称开孔的沉箱顶盖,距离开孔较近区域为应力敏感区,受到撞击时撞击应力较大。  相似文献   

8.
为探索海底管道在锚击作用下的损伤规律,通过海底管道损伤试验和数值模拟,研究了坠物质量、坠落高度和坠物形状对海底管道机械损伤的影响,并结合试验结果修正了Ellinas-Wallker公式。研究结果表明:管道的凹陷损伤随坠物质量和坠落高度的增大而变大;在相同质量的立方体、球体和模型锚三种形状坠物作用下,球体坠物对管道的损伤最严重;EllinasWallker公式计算结果偏于保守,修正后计算结果与试验和数值模拟结果吻合良好。研究结果可以为海底管道的工程设计及应用提供一定的参考。  相似文献   

9.
坠锚事故容易对海底管道造成撞击损伤,引起环境污染及经济损失。为保证管道在运行期间的安全,有必要对其进行风险分析。基于可靠度理论,在DNV规范(DNV-RP-F107)推荐方法的基础上,本文提出了一种失效概率的计算方法,该方法可考虑船锚质量、尺寸及管道尺寸、材料强度等因素对失效概率的影响,与实际情况更相符。结合工程实例,对船锚撞击作用下的海底管道进行了风险分析。考虑随机变量的变异性,探讨了管道失效概率对各变量的敏感性。分析结果可为降低海底管道损伤风险及采取合理的防护措施提供技术参考。  相似文献   

10.
为研究坠物对海底悬空管道的撞击损伤规律,基于非线性有限元分析软件ANSYS/LS-DYNA建立考虑管土相互作用的坠物撞击悬空管道数值模型。经过数值模拟,探究了撞击能量、土体性质和悬空长度等对海底管道受坠物撞击后凹陷损伤的影响。研究表明,撞击能量是影响海底悬空管道损伤程度的主要因素,在同样的撞击能量下,海底悬空管道的悬空段长度对管道的凹陷损伤影响不大,但管道弹性变形以及海床的土体变形会有差异,虽然海床土体变形会吸收大量的撞击能量,但改变土体性质同样对管道损伤结果影响不大。研究结果可以为海底管道的工程设计提供一定的参考。  相似文献   

11.
船舶抛锚撞击水下管汇会影响到管汇的正常作业,基于ANSYS/LS-DYNA动力学分析软件,建立锚-水下管汇-海床土体的三维有限元模型,对抛锚碰撞水下管汇的过程进行数值仿真。通过求解水下管汇受碰撞后的等效应力、应变的时间历程及受撞击部位的凹陷损伤深度,发现最大等效应力点出现在管汇与锚接触位置处,管汇的碰撞部位最终发生凹痕变形。同时讨论锚与管汇接触面的形状以及海床土体对水下管汇损伤程度的影响,当冲击能量相同时,锚与水下管汇的碰撞接触面积越小,水下管汇的损伤深度就越大;当锚与管汇接触的接触面积相同时,冲击能量越大,水下管汇的损伤变形越大。海床土体的剪切弹性模量对管汇的凹陷损伤深度以及最大等效应力影响与冲击能量有关,海床土体的内摩擦角对管汇的碰撞影响较小。  相似文献   

12.
王慧  张可成  王忠涛  张宇  王洪波 《海洋学报》2020,42(11):123-130
航船应急抛锚时锚板贯入土体可能会影响河床或海床中的结构物甚者造成破坏,因此在通航频繁的航道,结构物埋深的设计需要充分考虑应急抛锚时锚板的贯入深度。本文通过缩尺模型试验模拟了霍尔锚在中等密实度粉细砂中的抛锚贯入过程,研究了不同抛锚速度(1.15~4.4 m/s)及粉细砂相对密实度(0.45~0.65)对抛锚贯入深度的影响;基于太沙基极限承载力理论和能量守恒定律,推导出霍尔锚在粉细砂土中贯入深度的表达式,与模型试验结果对比显示理论计算结果偏于保守。基于试验结果提出修正系数,修正后的理论公式能够较好地快速预测霍尔锚在中等密实度粉细砂中的贯入深度。研究结果为粉细砂土河床或海床中的结构物埋深设计提供了一定的技术参考。  相似文献   

13.
基于ANSYS/LS-DYNA有限元软件显示动力分析,采用非线性动态有限元法,对海底管道受坠物碰撞的动态过程进行数值模拟,对比分析坠物质量、坠物形状、轴向预加荷载因素对海底管道在撞击作用下凹陷及损伤区域的影响。结果表明:海底管道受撞击部位的凹陷及损伤区域随着坠物能量的增加而增大;坠物形状因素由于碰撞发生时接触面不同对管道凹陷及损伤区域造成不同的影响;海底管道内压的存在一定程度上抵抗了碰撞造成的局部塑性损伤变形;轴向受拉对海底管道损伤方面的影响很小可忽略不计;适当增加轴向压力可提升海底管道抗碰撞冲击能力而过大的轴向压力会加剧管道破坏。  相似文献   

14.
李凯  国振  王立忠 《海洋工程》2018,36(3):33-42
选择恰当的管土相互作用模型,对于准确描述海洋悬链线立管在触地区的动力响应至关重要。首先总结分析了国内外已有的三类典型管土作用模型,并基于三种模型计算模拟了触地区管道的竖向运动过程,计算结果与试验数据进行了对比验证。选用的三类模型均包括四个管土作用状态,即未接触、初始贯入、上拔和再贯入。研究发现:RQ模型对管道远端管道埋深的预测结果远比试验值小,明显低估了管道的触地区范围;AB模型可以考虑管道的开槽效应,但对于土体强度弱化估算不准,预测的管道埋深远低于试验值;ABY模型能够考虑土体强度的循环弱化,但在模拟管土相互作用时会严重低估土体的强度,预测的管道远端的埋深远大于试验值,这可能导致对管道疲劳寿命的估计错误,需对其进行必要的修正。  相似文献   

15.
基于ANSYS/LS-DYNA动力学分析软件,采用非线性动力有限元法,对坠物撞击海底管道的过程进行数值仿真。通过大量的数值模拟得出:相同坠落物能量的情况下,悬空管道的凹陷损伤深度与裸露管道的相比偏小,且随着坠落物能量的增加,其差值增大;随着坠落物速度、坠落物质量的增大,管道撞击部位凹陷变形加剧,海底管道悬空段的最大振动幅值增大;相同坠落物能量的情况下,坠落物与悬空管道的接触面积越小,悬空管道的损伤深度越大;海床土体参数(剪切弹性模量、内摩擦角、密度)的变化对悬空管道的凹陷损伤深度及悬空段的最大振动幅值的影响较小。  相似文献   

16.
娄敏  明海芹 《海洋通报》2015,34(1):113-120
基于ANSYS/LS-DYNA动力学分析软件,采用非线性动力有限元法,对坠物撞击海底管道的过程进行数值仿真。通过大量的数值模拟得出:相同坠落物能量的情况下,悬空管道的凹陷损伤深度与裸露管道的相比偏小,且随着坠落物能量的增加,其差值增大;随着坠落物速度、坠落物质量的增大,管道撞击部位凹陷变形加剧,海底管道悬空段的最大振动幅值增大;相同坠落物能量的情况下,坠落物与悬空管道的接触面积越小,悬空管道的损伤深度越大;海床土体参数(剪切弹性模量、内摩擦角、密度)的变化对悬空管道的凹陷损伤深度及悬空段的最大振动幅值的影响较小。  相似文献   

17.
针对船舶抛锚或海洋平台坠物对海底管线的撞击会对管道造成一定的危害,本文设计了坠物撞击管道的实验装置,并对实验装置进行了优化分析,在此基础上提出了可行的实验方案。通过ANSYS有限元软件对该实验装置进行了静力分析,确定了最终的装置结构形式,并开展了坠物与管道的撞击实验。该装置在实验条件下最大变形不足1mm,可满足实验要求。实验证明,随着撞击能量的增加,管道的损伤程度明显增大。本次实验研究结果为分析坠物对管道的撞击作用提供了研究基础。  相似文献   

18.
河床或海床中会布设光缆、管线、隧洞等结构物,如果该水域上有船只抛锚,就要考虑抛锚对结构物安全的影响。通过模型试验探究了霍尔锚在黏土中的抛锚深度,研究了贯入速度、锚重以及土强度对抛锚深度的影响。在模型试验中,用MEMS加速度传感器捕捉锚在土中运动时的加速度,并由加速度积分得到锚的下落速度及对应的下落位移。模型试验结果表明:当霍尔锚以极限速度贯入软黏土中时,17.8 t锚在强度为7.5 k Pa土中的贯入深度为4.0 m; 42 t锚在强度为8.3 k Pa的土中贯入深度为6.7 m。根据试验结果建立了霍尔锚在土中动力贯入时的运动微分方程,分析了作用在锚上的各项受力,并预测了抛锚深度。此外,根据模型试验结果,建立了抛锚深度和锚的总能量之间的经验公式。  相似文献   

19.
海底埋设高温管道隆起屈曲数值模拟研究   总被引:1,自引:1,他引:0  
高温是引发海底管道整体屈曲失效的主要因素,而海床上存在的局部隆起使得高温埋设管道更加容易发生隆起屈曲。这里重点研究海底埋设高温管道发生隆起屈曲的临界温度载荷及其影响因素,提出了一种简化的数值模拟分析模型,同已有的相关实验结果比较表明,本方法可以较好地近似计算高温管道的隆起屈曲。基于本方法开展的参数分析,得到了管道覆土高度、混凝土配重层厚度、海床不平整对海底高温管道发生隆起屈曲的影响趋势。  相似文献   

20.
落物撞击作用下海底管道风险评估   总被引:1,自引:0,他引:1  
海洋平台吊机起吊货物频繁,落物事故偶有发生,对平台附近的海底管道造成危害。在DNV推荐方法的基础上,改进了碰撞概率的计算方法。运用概率统计的方法以及失效概率理论编制Matlab程序,充分考虑各因素不确定性基础上,对落物撞击作用下海底管道进行了风险评估及敏感性分析。为减少落物对海底管线的损伤,及如何配置合理的防护措施提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号