首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.  相似文献   

2.
Fluid inclusions have recorded the history of degassing in basalt. Some fluid inclusions in olivine and pyroxene phenocrysts of basalt were analyzed by micro-thermometry and Raman spectroscopy in this paper. The experimental results showed that many inclusions are present almost in a pure CO2 system. The densities of some CO2 inclusions were computed in terms of Raman spectroscopic characteristics of CO2 Fermi resonance at room temperature. Their densities change over a wide range, but mainly between 0.044 g/cm3 and 0.289 g/cm3. Their micro-thermometric measurements showed that the CO2 inclusions examined reached homogenization between 1145.5℃ and 1265℃ . The mean value of homogenization temperatures of CO2 inclusions in basalts is near 1210℃. The trap pressures (depths) of inclusions were computed with the equation of state and computer program. Distribution of the trap depths makes it know that the degassing of magma can happen over a wide pressure (depth) range, but mainly at the depth of 0.48 km to 3.85 km. This implicates that basalt magma experienced intensive degassing and the CO2 gas reservoir from the basalt magma also may be formed in this range of depths. The results of this study showed that the depth of basalt magma degassing can be forecasted from CO2 fluid inclusions, and it is meaningful for understanding the process of magma degassing and constraining the inorganogenic CO2 gas reservoir.  相似文献   

3.
The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hosted precious metal deposit. Most of the previous researchers believed that the deposit was formed by meteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, nine light hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from the Changkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C1-4 and unsaturated alkenes C2-4 and aromatic hydrocarbons, in which the alkanes are predominant, while the contents of alkenes and aromatic hydrocarbons are very low. The Σalka/Σalke ratio of most samples is higher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens in sedimentary rocks caused by water-rock interactions at medium-low temperatures, and the metallogenic processes might have not been affected by magmatic activity. A thermodynamic calculation shows that the light hydrocarbons have reached chemical equilibrium  相似文献   

4.
The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.  相似文献   

5.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   

6.
《地学前缘(英文版)》2020,11(4):1145-1161
The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing'an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H_2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean.  相似文献   

7.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

8.
刘斌 《地球化学》1985,(1):90-97
Three thermodynamical equations, for unitary two-phase fluid inclusions have been deduced. (1) The thermodynamical equation for mutual transformation between gas and liquid phases in fluid inclusions. The transformation direction from one phase to the other can be known in terms of the density and filling degree of gas and liquid. (2) The thermodynamical equation for pressure effect on temperature after homogenization of fluid inclusions. The coefficient of P-T variation is directly proportional to the fining degree of gas phase and inversely to the density of gas phase and liquid phase. Equations for homogenization, decrepitation and formation temperatures of fluid inclusions can be inferred from. this equation. (3) The thermodynomical equation for decrepitation temperatures of fluid inclusions. Many factors have effects on the decrepitation temperatures of fluid inclusions.Decrepitation temperature cannot be considered in any case as formation temperature.Thermal and vapor halos produced by decrepitation of minerals of the same kind and the same period from the same locality are worthy of consideration.  相似文献   

9.
In this paper some new advances in the study of fluid inclusions of the Yinshan deposit in Jiangxi Province,China,are presented.The fluid inclusions of the deposit can be divided into four types:1) gas-rich inclusions;2)liquid-rich inclusions;3)salt-saturated H2O inclusions;and 4)single-phase or multiphase CO2-rich inclusions.Homogenization temperatures of the fluid inclusions range from 100 to 520℃,aminly in the range 120-400℃.The daughter crystal-bearing multiphase inclusions present in quartz porphyries(including Nos.13 and 4 dikes)have been observed.In ore veins,some daughter crystal-bearing multiphase inclusions have been observed.too.On the basis of the results of fluid inclusion research,the authors suggest that the ore-forming fluid must have a close genetic relation to magmatic hydrothermal solution.The ore-forming fluid was dominantly originated from the depth and the mixing of magmatic solution with meteoric water was enhanced during ascending of the fluid,accompanying immiscibility and boiling of fluid.Teher may be a conceales igneous body at the depth of the Yinshan deposity,which furnishes the scientific basis for metallogenic prognosis at th depth of the Yinshan deposit.  相似文献   

10.
In the Tuoshi oilfield,located in the Cenozoic Jianghan Basin of southeastern China ,there have been found hydrocarbon reservoirs hosted in lacustrine sandstones of the Eogene Xingouzui Formation.The main diagenetic features identified in these sandstones include the dissolution of detrital K-feldspar and albite grains,the precipitation of quartz as overgrowths and /or cements ,and the precipitation and /or transformation of clay minerals.These diagenetic features were interpreted to have occurred in early,intermediate and late stages,based on the burial depth.The kinetics of fluid-mineral reactions and the concentrations of aqueous species au each stage of diagenesis were simulated numerically for these lacustrine sandstones,using a quasi-sta-tionary state approximation that incorporates simultaneous chemical reactions in a time-space continuum.During the early diagenetic stage,pore fluid was weakly acidic,which resulted in dissolution of K-feldspar and albite and,therefore,led to the release of K^ ,Na^ ,Al^3 and SiO2(aq) into the diagenetic fluid.The increased K^ ,Na^ ,Al^3 and SiO2(aq) concentrations in the diagenetic fluid caused the precipitation of quartz,kaolinite and illite.At the beginning of the intermediate diagenetic stage the concentration of H^ was built up due to the decomposition of organic matter,which was responsible for further dissolution of K-feldspar and albite and pre-cipitation of quartz,kaolinite,and illite.During the late diagenetic stage,the pore fluid was weakly alkaline,K-feldspar became stable and was precipitated with quartz and clay minerals.When the burial depth was greater than 3000 m,the pore fluids became supersaturated with respect to allbite,but undersaturated with respect to quartz,resulting in the precipitation of albite and the dissolution of quartz.The diagenetic reactions forecasted in the numerical modeling closely matched the diagenet-ic features identified by petrographic examination, and therefore,can help us to gain a better understanding of the diagenetic processes and associated porosity evolution in sandstone reservoirs.  相似文献   

11.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

12.
The study of fluid inclusions can help constrain the conditions at which diagenetic minerals precipitated, leading to a better understanding of the geologic controls and relative timing of changes in porosity and/or mineralising events. Many of the diagenetic minerals are easily deformed and it is important to check for any post-entrapment changes to the inclusions. Possible post-entrapment changes include reaction with the host crystal, necking down, nucleation metastability and thermal re-equilibration. The recommended method of detecting these problems is to examine individual fluid inclusion assemblages (FIAs) and report data for each individual FIA. These studies have been enhanced by the development of new micro-analytical techniques such as micro-fluorescence spectroscopy, micro-infrared spectroscopy, nuclear magnetic resonance, various mass spectrometry techniques and the analysis of individual fluid inclusions using laser ablation/decrepitation methods. Special techniques have been developed for hydrocarbon-bearing inclusions such as the Grains containing Oil Inclusions (GOI), Fluid Inclusion Stratigraphy (FIS), and the Molecular Composition of Inclusions (MCI) techniques. The fluid inclusions that form in some minerals during diagenesis provide the only direct means of examining the fluids present in these systems. They provide useful temperature, pressure, and fluid composition data that cannot be obtained by other means.  相似文献   

13.
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to  相似文献   

14.
Liquid–liquid immiscibility has crucial influences on geological processes, such as magma degassing and formation of ore deposits. Sulfate, as an important component, associates with many kinds of deposits. Two types of immiscibility, including (i) fluid–melt immiscibility between an aqueous solution and a sulfate melt, and (ii) fluid–fluid immiscibility between two aqueous fluids with different sulfate concentrations, have been identified for sulfate–water systems. In this study, we investigated the immiscibility behaviors of a sulfate- and quartz-saturated Na2SO4–SiO2–H2O system at elevated temperature, to explore the phase relationships involving both types of immiscibility. The fluid–melt immiscibility appeared first when the Na2SO4–SiO2–H2O sample was heated to ~270°C, and then fluid–fluid immiscibility emerged while the sample was further heated to ~450°C. At this stage, the coexistence of one water-saturated sulfate melt and two aqueous fluids with distinct sulfate concentrations was observed. The three immiscible phases remain stable over a wide pressure–temperature range, and the appearance temperature of the fluid–fluid immiscibility increases with the increased pressure. Considering that sulfate components occur extensively in carbonatite-related deposits, the fluid–fluid immiscibility can result in significant sulfate fractionation and provides implications for understanding the formation of carbonatite-related rare earth deposits.  相似文献   

15.
Abundant fluid-melt inclusions are found in the aegirine-augite-barite pegmatite and carbonatite veins in the Mianning REE deposit,Sichuan,They were trapped in early stage fluorite and quartz from a salt-melt system at temperatures higher than 5000℃,Meanwhile,fluid inclusions are also present in alrge amounts in bastnaesite.Homogenized between 150 and 270℃,these inclusions are thought to be representative of the physico-chemical conditions of REE mineralization.These results show that the Mianning REE deposit is of typical hydrothermal origin developed from a salt-melt system.  相似文献   

16.
The dating of fluid inclusions of quartz yields an Ar-Ar isochrone age of 320.4±6 Ma. Three types of fluid inclusions have been identified with the homogenization temperature ranging from 157℃ to 362℃. The homogenization temperature consists of two groups. The first group varies from 157℃ to 166℃, and the second from 232℃ to 362℃. Their chemical composition is dominated by Na+-Ca2+-Mg2+ and Cl-. The relative concentration of ions is characteristic by Na+>Ca2+>K+>Mg2+ and C1->SO42-> F-. The δD and δ18O values indicate that the ore-forming fluid originates from mixing of multi-source water. The Sarkobu gold deposit has experienced two mineralization stages: gold was enriched during the volcanic-exhalative-sedimentary process in the early stage, while the gold deposit was finally formed under compression-shearing during the orogenic period.  相似文献   

17.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

18.
In the Yongjin oilfield of southern Junggar Basin, many wells have been drilled to produce industrial oils. Based on the analysis of fluid inclusions in the reservoirs, in combination with the geological and thermal evolution, the charge history in this area has been studied. The results indicate that the Jurassic Formation and Cretaceous Formation reservoirs contain abundant oil and gas inclusions, and four types of fluid inclusions have been distinguished. According to the homogenization temperatures of the fluid inclusions, the hydrocarbons charged the Cretaceous Formation for two periods, one ranges from the Late Cretaceous period to the Eogene period, and the other ranges from the Neocene period to the present. The oil filling history is correlated with the oil source correlation analysis, which is controlled by the movement of the Che-Mo plaeo uplift. Overall, oil accumulation is characterized by the superposition of two sets of source rocks for two stages in the Shawan depression.  相似文献   

19.
The Khur metallogenic district is located in a volcanic-plutonic belt in the central Lut Block(central eastern Iran). Mineralization occurs in Middle Eocene andesitic tuff and along four main vein systems trending northwest-southeast(Shurk, Mir-e-Khash, Shikasteh Sabz and Ghar-e-Kaftar veins).Microscopic studies reveal that the veins contain bornite, chalcocite, pyrite, tennantite together with minor sphalerite and chalcopyrite as hypogene minerals and chalcocite, digenite, covellite, valleriite,malachite, azurite, atacamite, hematite, and goethite as supergene minerals. The ore bodies are accompanied by narrow but intensely developed wall rock alterations of argillization, carbonatization and silicification. Copper content reaches 6.5, 2.4, 4.2 and 5% in Mir-e-Khash, Shikasteh Sabz, Ghar-eKaftar and Shurk, respectively. Microthermometric measurements of quartz-and calcite-hosted fluid inclusions indicate that the mineralization might be derived from a moderately saline hydrothermal fluid at temperatures between 175-316℃. Calculated δ~(18)O values of water in equilibrium with quartz and calcite for Khur veins suggest that the fluid might have had a magmatic source, but the ~(18)O-depletion was developed through mixing with meteoric water. Copper deposition in Khur veins is believed to have been largely caused by mixing, although wall rock reactions may also have occurred. The Khur veins are classified as volcanic-subvolcanic hydrothermal-related vein deposits.  相似文献   

20.
刘斌  徐金明 《岩石学报》2007,23(1):105-112
During the microthermometric measurement(cooling)of aqueous inclusions with multivolatile components,solid crystals of gas clathrates often occur with snow-flower-or soft-ice appearances.The structural formula of these solids is M·nH_2O(where n≥5.67).Many hydrocarbons,related compounds and their binary or multi-component mixtures may generate gas clathrates.This phenomenum is of fundamental importance to the study of inclusions with hydrocarbon aqueous solutions,because this is related to the determination of inclusion parameters and the computation of thermodynamic parameters. In the nature most aqueous inclusions contain not merely one volatile component but multi-volatile components.Therefore,the measurement of aqueous inclusions with multivolatile components is of universal significance and great importance.There have been many studies and available formula or figures about the computation of thermodynamic parameters for aqueous inclusions with one volatile component.Nevertheless,there are few studies concerning with muhivolatile components and it is very difficult to computate thermodynamic parameters for aqueous inclusions with these components. In this paper,hydrated coefficient K is introduced.K_i is the ratio of molar fraction of component i in the gas phase to that in the gas clathrate,or K_i=y_i/x_i.Because K is a function of temperatures and pressures,it can be used to evaluate the temperature-pressure conditions on the phase behavior with muhivolatile components. Based on the regression analysis of available experimental data,the authors have developed computational expression of hydrated coefficients in relation to temperature and pressure for most hydrocarbons and other volatile components,which is helpful to conveniently compute thermodynamic parameters on stability state for elathrates with volatile components.As aqueous inclusions with muhivolatile components are common in the nature,by the use of final melting temperatures of clathrates from mierothermometry and these formula,fluid density of gas phase with valotile components and bulk fluid density of inclusions can be accurately calculated. Furthermore,this method may provide foundations to determine the isochores of inclusions and to calculate trapping temperatures and pressures. Finally,detailed analyses for two computational examples about aqueous inclusions with muhivolatile components are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号