首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   

3.
As continental to global scale high-resolution meteorological datasets continue to be developed, there are sufficient meteorological datasets available now for modellers to construct a historical forcing ensemble. The forcing ensemble can be a collection of multiple deterministic meteorological datasets or come from an ensemble meteorological dataset. In hydrological model calibration, the forcing ensemble can be used to represent forcing data uncertainty. This study examines the potential of using the forcing ensemble to identify more robust parameters through model calibration. Specifically, we compare an ensemble forcing-based calibration with two deterministic forcing-based calibrations and investigate their flow simulation and parameter estimation properties and the ability to resist poor-quality forcings. The comparison experiment is conducted with a six-parameter hydrological model for 30 synthetic studies and 20 real data studies to provide a better assessment of the average performance of the deterministic and ensemble forcing-based calibrations. Results show that the ensemble forcing-based calibration generates parameter estimates that are less biased and have higher frequency of covering the true parameter values than the deterministic forcing-based calibration does. Using a forcing ensemble in model calibration reduces the risk of inaccurate flow simulation caused by poor-quality meteorological inputs, and improves the reliability and overall simulation skill of ensemble simulation results. The poor-quality meteorological inputs can be effectively filtered out via our ensemble forcing-based calibration methodology and thus discarded in any post-calibration model applications. The proposed ensemble forcing-based calibration method can be considered as a more generalized framework to include parameter and forcing uncertainties in model calibration.  相似文献   

4.
《水文科学杂志》2013,58(5):909-917
Abstract

The possibility of simulating flooding in the Huong River basin, Vietnam, was examined using quantitative precipitation forecasts at regional and global scales. Raingauge and satellite products were used for observed rainfall. To make maximum use of the spatial heterogeneity of the different types of rainfall data, a distributed hydrological model was set up to represent the hydrological processes. In this way, streamflow simulated using the rainfall data was compared with that observed in situ. The forecast on a global scale showed better performance during normal flow peak simulations than during extreme events. In contrast, it was found that during an extreme flood peak, the use of regional forecasts and satellite data gives results that are in close agreement with results using raingauge data. Using the simulated overflow volumes recorded at the control point downstream, inundation areas were then estimated using topographic characteristics. This study is the first step in developing a future efficient early warning system and evacuation strategy.  相似文献   

5.
This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression‐based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped‐conceptual modelling system HBV‐96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Construction of dams and the resulting water impoundments are one of the most common engineering procedures implemented on river systems globally; yet simulating reservoir operation at the regional and global scales remains a challenge in human–earth system interactions studies. Developing a general reservoir operating scheme suitable for use in large-scale hydrological models can improve our understanding of the broad impacts of dams operation. Here we present a novel use of artificial neural networks to map the general input/output relationships in actual operating rules of real world dams. We developed a new general reservoir operation scheme (GROS) which may be added to daily hydrologic routing models for simulating the releases from dams, in regional and global-scale studies. We show the advantage of our model in distinguishing between dams with various storage capacities by demonstrating how it modifies the reservoir operation in respond to changes in capacity of dams. Embedding GROS in a water balance model, we analyze the hydrological impact of dam size as well as their distribution pattern within a drainage basin and conclude that for large-scale studies it is generally acceptable to aggregate the capacity of smaller dams and instead model a hypothetical larger dam with the same total storage capacity; however we suggest limiting the aggregation area to HUC 8 sub-basins (approximately equal to the area of a 60 km or a 30 arc minute grid cell) to avoid exaggerated results.  相似文献   

7.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

8.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   

9.
F. Genz  L.D. Luz 《水文科学杂志》2013,58(5):1020-1034
Abstract

The hydrological regime of a river is defined by variables or representative curves that in turn have characteristics related to fluctuations in flow rates resulting from climate variability. Distinguishing between the causes of streamflow variations, i.e. those resulting from human intervention in the watershed and those due to climate variability, is not trivial. To discriminate the alterations resulting from climate variation from those due to regulation by dams, a reference hydrological regime was established using the classification of events based on mean annual streamflow anomalies and inferred climatic conditions. The applicability of this approach was demonstrated by analysis of the streamflow duration curves. An assessment of the hydrological regime in the lower reaches of the São Francisco River, Brazil, after the implementation of hydropower plants showed that the operation of the dams has been responsible for 59% of the hydrological changes, while the climate (in driest conditions) has contributed to 41% of the total changes.

Editor Z.W. Kundzewicz

Citation Genz, F. and Luz, L.D., 2012. Distinguishing the effects of climate on discharge in a tropical river highly impacted by large dams. Hydrological Sciences Journal, 57 (5), 1020–1034.  相似文献   

10.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

11.
《水文科学杂志》2012,57(2):311-324
ABSTRACT

In semi-arid regions, reduced river flows present is a major challenge in water resources management. We present a new standardized contribution of rainfall to runoff index (SCRI) for evaluating changes in rainfall contribution to river flow. We employ the standardized precipitation index (SPI), standardized discharge index (SDI) and SCRI to characterize meteorological drought, hydrological drought and land-use change impacts on river flow, respectively. These indices are applied to the Mond River Basin (Iran), which is regulated by the Salman Farsi and Tangab dams since 2006. A new concept called “mirage water” is proposed that represents the reduced water delivery to downstream areas due to new developments and water withdrawals in headwater tributaries. In particular, mirage water accounts for changes in upstream water consumption between the planning phase and construction/operation life of dams. We recommend that this concept be used for communication with decision-makers and managers to clarify the need for revising dimensions of planned dams.  相似文献   

12.
ABSTRACT

In cold region environments, any alteration in the hydro-climatic regime can have profound impacts on river ice processes. This paper studies the implications of hydro-climatic trends on river ice processes, particularly on the freeze-up and ice-cover breakup along the Athabasca River in Fort McMurray in western Canada, which is an area very prone to ice-jam flooding. Using a stochastic approach in a one-dimensional hydrodynamic river ice model, a relationship between overbank flow and breakup discharge is established. Furthermore, the likelihood of ice-jam flooding in the future (2041–2070 period) is assessed by forcing a hydrological model with meteorological inputs from the Canadian regional climate model driven by two atmospheric–ocean general circulation climate models. Our results show that the probability of ice-jam flooding for the town of Fort McMurray in the future will be lower, but extreme ice-jam flood events are still probable.  相似文献   

13.
The Three Gorges Dam is the world's largest capacity hydropower station located in the Hubei province along the Yangtze River in China, which began operations in 2003. The dam also functions to store and regulate the downstream releases of water in order to provide flood control and navigational support in addition to hydropower generation. Flow regulation is particularly important for alleviating the impacts of low- and high-flow events during the summer rainy season (June, July, and August). The impact of dam operations on summer flows is the focus of this work. Naturalized flows are modelled using a canonical correlation analysis and covariates of subbasin-scale precipitation resulting in good model skill with an average correlation of 0.92. The model is then used to estimate natural flows in the period after dam operation. A comparison between modelled and gauged streamflow post 2003 is made and the impact of the dam on downstream flow is assessed. Streamflow variability is found to be strongly related to rainfall variability. An analysis of regional streamflow variability across the Yangtze River Basin showed a mode of spatially negatively correlated variability between the upper and lower basin areas. The Three Gorges Dam likely mitigated the occurrence of high-flow events at Yichang station located near the dam. However, the high flow at the remaining stations in the lower reach is not noticeably alleviated due to the diminishing influence of the dam on distant downstream flows and the impact of the lakes downstream of the dam that act to attenuate flows. Three types of flow regime changes between naturalized and observed flows were defined and used to assess the changes in the occurrence of high- and low-flow events resulting from dam operations.  相似文献   

14.
Skilful and reliable precipitation data are essential for seasonal hydrologic forecasting and generation of hydrological data. Although output from dynamic downscaling methods is used for hydrological application, the existence of systematic errors in dynamically downscaled data adversely affects the skill of hydrologic forecasting. This study evaluates the precipitation data derived by dynamically downscaling the global atmospheric reanalysis data by propagating them through three hydrological models. Hydrological models are calibrated for 28 watersheds located across the southeastern United States that is minimally affected by human intervention. Calibrated hydrological models are forced with five different types of datasets: global atmospheric reanalysis (National Centers for Environmental Prediction/Department of Energy Global Reanalysis and European Centre for Medium‐Range Weather Forecasts 40‐year Reanalysis) at their native resolution; dynamically downscaled global atmospheric reanalysis at 10‐km grid resolution; stochastically generated data from weather generator; bias‐corrected dynamically downscaled; and bias‐corrected global reanalysis. The reanalysis products are considered as surrogates for large‐scale observations. Our study indicates that over the 28 watersheds in the southeastern United States, the simulated hydrological response to the bias‐corrected dynamically downscaled data is superior to the other four meteorological datasets. In comparison with synthetically generated meteorological forcing (from weather generator), the dynamically downscaled data from global atmospheric reanalysis result in more realistic hydrological simulations. Therefore, we conclude that dynamical downscaling of global reanalysis, which offers data for sufficient number of years (in this case 22 years), although resource intensive, is relatively more useful than other sources of meteorological data with comparable period in simulating realistic hydrological response at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Gangsheng Wang  Jun Xia 《水文研究》2010,24(11):1455-1471
Hydrological simulation and assessment in a dam–sluice regulated river basin are a complex and challenging issue. In this article, an improved SWAT2000 modelling system was developed that incorporated the Shuffled complex evolution (SCE‐UA) optimization algorithm and the multi‐site and multi‐objective calibration strategy. The implication of multi‐objective is different for different types of outlets, i.e. streamflow for an ordinary outlet, inflow for a sluice, and water storage for a reservoir. Model parameters were redefined to improve model simulations. The surface runoff lag time (SURLAG) was extended as a spatially distributed parameter, and a correction coefficient was introduced to modify the saturated hydraulic conductivity. The modelling system was then applied to the Huai River basin of China under various climatic conditions, including a very dry year (1999), a dry year (1981), an average year (1971), and wet year (1991). In all, 26 dams and 35 sluices were considered, among which about 20 dams/sluices were used for model calibration. The impact assessment primarily focused on the very dry year (1999). The results indicated that the released water from large reservoirs was blocked in the river channels by sluices located downstream. In the very dry year, the dam–sluice operations could result in an increase of the runoff volume during the non‐flood season and a decrease in runoff during the flood season, but the changing magnitude during the non‐flood season was much greater. An important conclusion of this case study is that the sluices in the Sha‐Yin branch located in the north region and the dams in the southern mountainous region above the Wangjiaba Hydrological Station have played the most significant role in regulating the streamflow of the entire river basin. The methods addressed in this article can simulate hydrological regime in the river basins regulated by dams and sluices under different climatic conditions at the whole‐watershed scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Impulsive force of debris flow on a curved dam   总被引:8,自引:0,他引:8  
Although Sabo dams are an efficient method for river and basin management, traditional Sabo dams have a great impact on ecology and landscape. Moreover, such dams are hit and often damaged by great impulsive force when they block the debris flow. Therefore, alternative shapes for Sabo dam deserve thorough investigation. In this investigation, a curved dam was designed by changing the upstream-dam-surface geometric shape to reduce the impulsive force of the debris flow, with enhanced stability and reduced concrete mass being the anticipated outcomes. In this study, the flume and laboratory facilities simulated the impulsive force of the debris flow to the Sabo dams. Three geometric forms, including vertical, slanted and curved Sabo dams, were used to determine the impulsive force. Impulsive force theories of the debris flow were derived from the momentum equation and the Bernoulli equation. In these, the impulsive force was balanced by the friction force of the Sabo dam and the opposite force of the load cell behind the dam as it was hit by the debris flow. Positive correlations were found when comparing the experimental data with the theoretical results. These findings suggest that our impulsive force theory has predictive validity with regard to the experimental data. The results from both theory and experimental data clearly show that curved darns were sustained less force than the other darns under the same debris flow. This comparison demonstrates the importance of curved geometry for a well-designed Sabo dam.  相似文献   

17.
The annual hydrological regime of the Nakambe River shows substantial changes during the period 1955–1998 with a shift occurring around 1970. From 1970 to the mid-1990s, despite a reduction in rainfall and an increase in the number of dams in the basin, average runoff and maximum daily discharges increased. This paper reviews the hydrological behaviour of the Nakambe River from 1955 to 1998 and examines the potential role of land use change on soil water holding capacity (WHC) in producing the counter-intuitive change in runoff observed after 1970. We compare the results of two monthly hydrological models using different rainfall, potential evapotranspiration and WHC data sets. Model simulations with soil WHC values modified over time based upon historical maps of land use, are compared against simulations with a constant value for WHC. The extent of natural vegetation declined from 43 to 13% of the total basin area between 1965 and 1995, whilst the cultivated areas increased from 53 to 76% and the area of bare soil nearly tripled from 4 to 11%. The total reduction in WHC is estimated to range from 33 to 62% depending on the method used, either considering that the WHC values given by the FAO stand for the environmental situation in 1965 or before. There is a marked improvement in river flow simulation using the time-varying values of soil WHC. The paper ends with a discussion of the role of other factors such as surface runoff processes and groundwater trends in explaining the hydrological behaviour of the Nakambe River.  相似文献   

18.
Landslide dams are a common phenomenon. They form when a landslide reaches the bottom of a river valley causing a blockage. The first effect of such a dam is the infilling of a lake that inundates the areas upstream, while the possibility of a sudden dam collapse, with a rapid release of the impounded waters, poses a higher flood risk to the downstream areas. The results of the main inventories carried out to date on landslide dams, have been examined to determine criteria for forecasting landslide dam evolution with particular emphasis on the assessment of dam stability. Not all landslides result in the blockage of a river channel. This only occurs with ones that can move a large amount of material with moderate or high‐velocities. In most cases, these landslides are triggered by rainfall events or high magnitude earthquakes. A relationship also exists between the volume of the displaced material and the landslide dam stability. Several authors have proposed that landslide dam behaviour can be forecast by defining various geomorphological indexes, that result from the combination of variables identifying both the dam and the dammed river channel. Further developments of this geomorphological approach are presented in this paper by the definition of a dimensionless blockage index. Starting with an analysis of 84 episodes selected worldwide, it proved to be a useful tool for making accurate predictions concerning the fate of a landslide dam. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
鱼类过坝后的上溯行为对鱼类寻找适宜的产卵、索饵等功能性栖息地至关重要。现阶段我国大多数研究聚焦于鱼类上溯通过鱼道的游泳行为量化,而过坝后的上溯行为分析鲜有报道。本研究在金沙江下游支流黑水河松新坝址处利用PIT(passive integrated transponder)遥测技术对松新电站过鱼对象短须裂腹鱼(Schizothorax wangchiachii)过坝后的上溯行为开展监测,考虑监测过程中水文情势变化对过坝后上溯行为的影响,采用生存分析方法,构建了耦合多因素(流量、水温、河道涨落水率、昼夜节律、肥满度等)的Cox风险比例回归模型,利用AIC模型准则筛选出最优模型参数,识别了影响鱼类过坝后上溯成功率的关键因素。结果表明:(1)短须裂腹鱼在松新鱼道的上溯效果显著优于河道;(2)水温及河道涨落率是影响短须裂腹鱼过坝后上溯效果的关键因素;(3)水温与短须裂腹鱼过坝后河道上溯成功率呈负相关,当水温超过短须裂腹鱼最适温度后,河道上溯成功率随着温度的上升呈递减趋势;河道涨落水率与短须裂腹鱼过坝后河道上溯成功率呈正相关,其中涨水情势下短须裂腹鱼河道成功上溯的概率高于落水,河道上溯成功率随着涨...  相似文献   

20.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号