首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

2.
Internal inlet for wave generation and absorption treatment   总被引:1,自引:0,他引:1  
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines.  相似文献   

3.
A non-linear coupled-mode system of horizontal equations is presented, modelling the evolution of nonlinear water waves in finite depth over a general bottom topography. The vertical structure of the wave field is represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and the local-mode series exhibits fast convergence. Thus, a small number of modes (up to 5–6) are usually enough for precise numerical solution. In the present work, the coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate depth to shallow-water wave conditions, and its results are compared vs. Stokes and cnoidal wave theories, as well as with fully nonlinear Fourier methods. Furthermore, numerical results are presented for waves propagating over variable bathymetry regions and compared with nonlinear methods based on boundary integral formulation and experimental data, showing good agreement.  相似文献   

4.
The unsteady, two-dimensional Navier–Stokes equations and the exact free surface boundary conditions were solved to study the interaction of a solitary wave and a submerged dike. A piston-type wavemaker was set up in the computational domain to produce the incident solitary waves. The incident wave and the associated boundary layer flow in a wave tank with a flat bed were compared with the analytical solutions to verify the accuracy of this numerical scheme. Effects of the incident wave height and the size of the dike on the wave transformation, the flow fields, and the drag forces on the dike were discussed. Our numerical results showed that even though the induced local shear stress on the top surface of the dike is large at some particular locations, the resultant pressure drag is much larger than the friction drag. The primary vortex generated at the lee side of the dike and the secondary vortex at the right toe of the dike may scour the bottom and cause a severe problem for the dike.  相似文献   

5.
内孤立波具有较大的振幅与较强的垂向剪切,能对海洋工程设施产生极大的破坏作用。本文设计实验研究了内孤立波与直立小直径桩柱的相互作用,采用粒子图像速度测量法(PIV)测量内孤立波的流速场,并采用自行设计的测力天平测量桩柱受力,测量分析了内孤立波对小直径直立桩柱产生作用力的实验值,与Morison公式计算的理论值比较。实验结果表明,第一模态内孤立波的流速方向以及作用力在桩柱的上下部分方向相反,产生很强的速度切变和扭力,对小直径直立桩柱造成破坏。通过与Morison公式计算的理论值比较,发现实验值与理论值的大小以及分布规律基本相同。  相似文献   

6.
Simulation of nonlinear wave run-up with a high-order Boussinesq model   总被引:2,自引:0,他引:2  
This paper considers the numerical simulation of nonlinear wave run-up within a highly accurate Boussinesq-type model. Moving wet–dry boundary algorithms based on so-called extrapolating boundary techniques are utilized, and a new variant of this approach is proposed in two horizontal dimensions. As validation, computed results involving the nonlinear run-up of periodic as well as transient waves on a sloping beach are considered in a single horizontal dimension, demonstrating excellent agreement with analytical solutions for both the free surface and horizontal velocity. In two horizontal dimensions cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability to accurately simulate a moving wet–dry boundary is of considerable practical importance within coastal engineering, and the extension described in this work significantly improves the nearshore versatility of the present high-order Boussinesq approach.  相似文献   

7.
The analytical study is made by using the method of matched asymptotic expansions on the transmission and reflection of solitary waves and cnoidal waves on two-dimensional floating bodies. The solutions give explicitly the variation pattern of the transmitted waves and the characteristics of the reflected waves, including the wave profile, amplitude, phase shift and evolution. The effects of the gap between the body and the sea bottom on the transmission and reflection of those waves are also discussed.  相似文献   

8.
The accuracy of several asymptotic series expansions for wave speed and particle velocity under the crest of a solitary wave (on a fluid at rest) up to maximum height is investigated. The very accurate numerical results of Williams (1985) are the measure for our comparisons. The results are based on a scaling of calculated properties of long periodic waves to the case of solitary waves.For wave speeds the classical Boussinesq–Rayleigh expression gives good agreement up to a relative wave height of, say, 0.3. An asymptotic fourth-order expression based on Fenton (1990) can be used up to a relative wave height of 0.7, whereas the corresponding fifth-order expression is slightly less accurate.The Eulerian particle velocity profile under the wave crest is examined using a cnoidal wave expression from Fenton (1990) in the limit of the solitary wave. For low waves a `consistent' (i.e. properly truncated) fifth-order expression and an `inconsistent' ditto both coincide with Williams' results. Beginning at medium high waves, the consistent expression surprisingly exhibits oscillations in the velocity profile, and the oscillations become stronger as the wave gets higher. The inconsistent expression, however, yields the same shape as Williams' profile, but is displaced parallel to this, resulting in slightly larger velocities. For high waves also the inconsistent expression begins to differ in shape from Williams' profile, and asymptotic theory fails. Only for low waves `lowest order theory' gives acceptable results. We show analytically that for the highest wave the particle velocity profile has a horizontal tangent at the water surface; this is corroborated by Williams' numerical results.We also study the particle velocity at the wave crest as a function of wave height. It is shown that the variation has a vertical tangent for the highest wave. Two fifth-order asymptotic series for this velocity, based on the wave speed through the Bernoulli equation, show very good agreement with Williams up to a relative wave height of about 0.6.It is finally shown that it is possible to produce very accurate rational-function approximations to Williams' results for the wave speed as well as for the particle velocity at the wave crest.  相似文献   

9.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer .uid with a top free surface and a .at bottom. The solutions were deduced from the general form of linear .uid dynamic equations of two-layer .uid under the f -plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147–1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the in.uence of the earth’s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   

10.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12):1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth''s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   

11.
This paper presents the development of a generalized Boussinesq (gB) model for the periodic non-linear shallow-water waves. An incident cnoidal wave solution for the gB model is derived and applied to the wave simulation. A set of radiation boundary conditions is also established to transmit effectively the cnoidal waves out of the computational domain. The classical solutions of the second-order cnoidal waves are discussed within the content of the KdV equation and the generalized Boussinesq equations. An Euler's predictor-corrector finite-difference algorithm is used for numerical computation. The propagation of normally incident cnoidal waves in a channel is studied. The simulated wave profiles agree well with the analytical results. The temporal and spatial evolution of an obliquely incident cnoidal wave is also modelled. The phenomenon of Mach reflection is discussed.  相似文献   

12.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

13.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   

14.
Three-dimensional numerical modeling of nearshore circulation   总被引:1,自引:0,他引:1  
  相似文献   

15.
The velocity fluctuations of wind over wind-waves in a wind tunnel are measured with a X-type hot-wire anemometer at some heights over the water surface.The observed vertical profiles of the wave-induced velocity fluctuations and the wave-induced Reynolds stress at the wave spectral peak frequency are different from those expected from the inviscid quasi-laminar model;i.e., the observed vertical profiles of the power spectral density of the wave-induced horizontal or vertical velocity fluctuations of wind have the minimum value at the height much heigher than the critical layer, and the value of the wave-induced Reynolds stress is negative at several heights over the water surface. From the comparison between the experimental results and the numerical solutions of a linear model of the turbulent shear flow over the wavy boundary, it is shown that the discrepancy described above can be attributed to the atmospheric turbulence.  相似文献   

16.
风浪和海洋飞沫对海表面拖曳系数和风廓线的影响   总被引:2,自引:1,他引:1  
基于埃克曼理论,本文将波致应力和飞沫应力引入到海-气边界层的界面应力中,来研究海表面风浪和海洋飞沫对海-气边界层动量交换的影响,并得到修改后的埃克曼模型的理论解。波致应力是由风浪谱和波增长函数估计,并得到在中低风速下,波致应力、飞沫应力与湍流应力相比,对海表面拖曳系数和风廓线的影响非常小。当风速高于25米/秒时,海洋飞沫通过飞沫应力对海-气界面应力的作用远高于波致应力,以至于波致应力可以忽略。海表面拖曳系数在高风速下,随着风速的增大而减小。通过采用风浪谱的不同波龄,得到海洋飞沫的产生会导致海-气边界层风速的增加。最后,理论解与现场的观察数据进行了对比。对比后的数据表明,在中高风速下,飞沫对海-气边界层的影响远大于表面风浪。  相似文献   

17.
In this paper, the recent development in modeling seabed dissipative mechanisms in shallow water is reviewed. Specifically, laminar and turbulent boundary layer solutions as well as viscous mud flow solutions under transient waves are presented. These analytical solutions are compared with experimental data for both solitary waves and cnoidal waves. Very goed agreement is ohtained. The Boussinesq equations with boundary layer effects and the muddy seabed effects are also shown.  相似文献   

18.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

19.
The development of a theoretical model for estimating bottom boundary layer characteristics in the Hooghly estuary, located in the east coast of India, under combined effects of waves and currents is reported. Three numerical models, viz a depth averaged hydrodynamic model, SWAN wave model, and bottom boundary layer model, were integrated. In the bottom boundary layer parameters, maximum bottom stress, effective friction factor, and near-bed velocity both during ebb and flood phases of the tidal forcing are investigated and validated for the Haldia channel. The close match seen from results signifies applicability of this model for entire Hooghly basin.  相似文献   

20.
Near-bed horizontal (cross-shore) and vertical velocity measurements were acquired in a laboratory wave flume over a 1:8 sloping sand beach of finite depth. Data were acquired using a three-component acoustic Doppler velocimeter to measure the velocity field close to, but at a fixed distance from the bed. The near-bed velocity field is examined as close as 1.5 cm above a trough and crest of a ripple under three different types of wave forcing (Stokes waves, Stokes groups, and irregular waves). Although both horizontal and vertical velocity measurements were made, attention is focused primarily on the vertical velocity. The results clearly indicate that the measured near-bed vertical velocity (which was outside the wave-bottom boundary layer) is distinctly nonzero and not well predicted by linear theory. Spectral and bispectral analysis techniques indicate that the vertical velocity responds differently depending on the location over a ripple, and that ripple-induced effects on the velocity field are present as high as 4–8 cm above the bed (for vortex ripples with wavelengths on the order of 8 cm and amplitudes on the order of 2 cm). At greater heights above the bed, the observed wave-induced motion is adequately predicted by the linear theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号