首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

2.
The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67–80 wt.% SiO2) with high Ba (990–2500 ppm), Zr (800–1100 ppm) and Y (130–240 ppm), which are part of the Jozini–Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO2 rhyolites (76–78 wt.%; the Sica Beds Formation), with low Sr (19–54 ppm), Zr (340–480 ppm) and Ba (330–850 ppm) plus rare quartz-trachytes (64–66 wt.% SiO2), with high Nb and Rb contents (240–250 and 370–381 ppm, respectively), and relatively low Zr (450–460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO2  4.7 wt.%, Fe2O3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/86Sr = 0.7052–0.7054 and 143Nd/144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/86Sr (0.70377) and higher 143Nd/144Nd (0.51259). The silicic rocks show a modest range of initial Sr-(87Sr/86Sr = 0.70470–0.70648) and Nd-(143Nd/144Nd = 0.51223–0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.  相似文献   

3.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

4.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

5.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

6.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

7.
The Ebrahim-Attar (EBAT) leucogranite body is intruded within the Jurassic metamorphic complex of the Ghorveh area, located in the northern part of the Sanandaj Sirjan zone (SaSZ) of northwest Iran. The granite comprises alkali feldspar, quartz, Na-rich plagioclase and to a lesser extent, muscovite and biotite. Garnet and beryl are also observed as accessory minerals. Additionally, high SiO2 (71.4–81.0wt %) and Rb (145–440 ppm) content; low MgO (<0.12wt %), Fe2O3 (< 0.68 wt.%), Sr (mainly < 20 ppm), Ba (<57 ppm), Zr (10–53 ppm) and rare earth elements (REEs) low content (3.88–94.9 ppm with an average = 21.2 ppm); and flat REE patterns with a negative Eu anomaly characterize these rocks. The chemical composition and mineral paragenesis indicate that the rocks were formed by the partial melting of siliciclastic to pelitic rocks and can be classified as per-aluminous leucogranite or strongly per-aluminous (SP) granite. The Rb-Sr whole rock and mineral isochrons confirm that crystallization of the body occurred at 102.5 ± 6.1 Ma in Albian. The 87Sr/86Sr(i) and 143Nd/144Nd(i) ratios are 0.7081 ± 0.009 and 0.51220 ± 0.00005, respectively, and εNd(t) values range from −5.8 to −1.6. These values verify that the source of this body is continental crust. The Nd model ages (TDM2) vary between 1.0 and 1.3 Ga and are more consistent with the juvenile basement of Pan African crust. Based on these results, we suggest that the upwelling of the hot asthenospheric mantle in the SaSZ (likely during the Neo-Tethys rollback activity) occurred after the late Cimmerian orogeny. Consequently, we suggest that this process was responsible for a thinning and heating of the continental crust, from which the SP granite was produced by the partial melting of muscovite rich in pelitic or felsic-metapelitic rocks in the northern SaSZ.  相似文献   

8.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

9.
Appinites are commonly derived from a mantle source and are potentially significant in constraining the tectonic nature and evolution of ancient orogens, yet they have received little attention because of their limited outcrop. Here we investigate the newly identified appinitic rocks from the Laoniushan complex in the eastern Qinling Orogen. The appinites are composed of coarse-grained hornblendite, medium- and fine-grained hornblende-gabbro, and diorite porphyrite in the field occurrence. Winthin the appinitic rocks, the hornblendite displays features of cumulates. This study presents LA-ICP-MS zircon U-Pb data, mineral chemistry and whole rock geochemistry of the appinites. Zircons in the mafic to ultramafic rocks yield a U-Pb age of 152 ± 1Ma. The geochemistry of the rocks displays: lower SiO2, higher Fe2O3T and MgO contents, relatively flat chondrite normalized REE patterns with slight enrichment in light REE and a minor negative Eu anomaly; enrichment in large-ion lithophile elements(LILE, e.g. Rb, Ba, Sr and P), and depletion in high field strength elements(HFSE, e.g. Nb, Zr, Hf and Ti). Such geochemical features, together with crust-like bulk Sr-Nd isotopic compositions(initial 87Sr/86Sr ratios of 0.7057–0.7072, εNd(t) = −17.2 to −9), suggest that the Laoniushan appinites likely originated from an ancient metasomatised mantle, followed by fractional crystallization in the petrogenetic process. The studied appinites were most likely generated in an intracontinental extensional environment in the Late Mesozoic.  相似文献   

10.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

11.
We conducted a geochronological and geochemical study on the Paleoproterozoic potassic granites in the Lushan area, southern margin of the North China Craton (NCC) to understand the tectonic regime of the NCC at 2.2–2.1 Ga. This rock suite formed at 2194 ± 29 Ma. The rocks are rich in SiO2 (76.10–77.73 wt.%), and K2O (5.94–6.90 wt.%) with high K2O + Na2O contents from 7.56 wt.% to 8.48 wt.%, but poor in CaO (0.10–0.28 wt.%), P2O5 (0.02–0.05 wt.%) and MgO (0.01–0.30 wt.%, Mg# = 1.08–27.3), indicating they experienced fractional crystallization. Major element compositions suggest the potassic granites share an affinity with high K calc-alkaline granite. Even though the Lushan potassic granitic rocks have high A/CNK ratios (1.11–1.25), which can reach peraluminous feature, the very low P2O5 contents and negative correlation of P2O5 and SiO2 ruling out they are S-type granites. Different from peralkaline A-type granites, the Lushan potassic granites have variable Zr concentrations (160–344 ppm, 226 ppm on average) and 10,000 Ga/Al ratios (1.76–3.00), together with high zircon saturation temperatures (TZr = 826–885 °C), indicating they are fractionated aluminous A-type granites. Enriched LREE ((La/Yb)N = 9.72–81.8), negative Eu anomalies, and low Sr/Y with no correlations in Sr/Y and Sr/Zr versus CaO suggest the possible presence of Ca-rich plagioclase and absence of garnet in the residual. Magmatic zircon grains have variable εHf(t) values (−2.4 to +7.3) with zircon two-stage Hf model ages (TDMC) varying from 2848 Ma to 2306 Ma (mostly around ca. 2.5 Ga), and are plotted in the evolution line of crustal felsic rock. We propose that the rocks mainly formed by partial melting of ca. 2.50 Ga tonalitic–granodioritic crust as a result of upwelling mantle-derived magmas which provided thermal flux and source materials in an intra-continent rifting. The ca. 2.2 Ga magmatism suggests that intra-continental rifting occurred at 2.35–1.97 Ga at least in the southern margin of the NCC after its final cratonization in the late Neoarchean.  相似文献   

12.
Small granitoids emplaced into the early Jurassic volcani-clastic succession in the Yusufeli area, northeastern Turkey, can be temporally and geochemically classified into two groups: early Jurassic low-K and late Jurassic high-K. 40Ar–39Ar hornblende analyses yielded 188.0 ± 4.3 Ma for the Dutlup?nar intrusion, dating the subduction related rifting in the region. It comprises metaluminous to weakly peraluminous (ASI = 0.94–1.11) granodiorite and, to a lesser extent, tonalite whose K2O-poor (< 2.04 wt.%) nature and weak negative Eu anomalies (Eu/Eu? = 0.9–0.7) preclude derivation by fractional crystallization from a K-rich melt. Sr, Nd and Pb isotopic data reveal derivation by partial melting from an already cooled tholeiitic basic rocks which had mantle-like isotope signature. The Sumbated intrusion formed in the late Jurassic (153.0 ± 3.4 Ma) and consists chiefly of metaluminous (ASI = 0.84–0.99) quartz monzodiorite. Medium to high-K2O, relatively high MgO and Sr contents, flat HREE patterns without prominent Eu anomalies, slightly positive εNd(t) values (+ 1.5 to + 2.5) and low ISr ratios (0.7046–0.7056) are consistent with an origin by dehydration melting of a juvenile source, above the garnet stability field, dominated by likely K-amphibole bearing calc-alkaline mafic rocks. Geochemical data show that fractional crystallization from a Sumbated-like quartz monzodioritic magma is the fundamental process responsible for the evolved compositional range of the Keçikaya intrusion. The geochemical and geochronological data presented here indicate that the late Jurassic magmatism occurred in a post-collisional setting. Slab-breakoff, which was followed by shortly after collision, seems to be the most plausible mechanism for the generation of medium to high-K calc-alkaline rocks of the Sumbated and the Keçikaya intrusions, indicating a switch in the geodynamic setting, e.g., from pre-collision to post-collision in the middle Jurassic in the eastern Pontides.  相似文献   

13.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

14.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

15.
The Suyunhe large porphyry Mo deposit (∼0.57 Mt molybdenum), located in the West Junggar, NW China, is the largest known porphyry Mo deposit in Xinjiang. Granitoids in this deposit are mainly characterized by three closely spaced intrusive centers (known as stocks I, II and III respectively). The stocks I and III mainly consist of barren granodiorite porphyry and tonalite porphyry, whereas the stock II is mainly composed of fertile monzonitic granite porphyry and granite porphyry. Based on detailed major and trace element, and Sr–Nd isotopic analyses, two distinct compositional groups can be identified. The first group of high-silica end-members (HSE) is characterized by high SiO2 (mostly >75 wt%), low MgO (0.07–0.69 wt%) and Mg# (0.19–0.36), significant Eu depletion in the chondrite-normalized diagram, and low Sr/Y and La/Yb, as well as noticeably negative anomalies of Ba, Sr, P and Ti in the primitive mantle-normalized diagram. The second group of low-silica end-members (LSE), however, displays adakite-like features with lower SiO2 (<75 wt%), higher MgO (0.52–1.32 wt%) and Mg# (0.32–0.52; mostly >0.4), and higher Sr/Y (mostly >20) and La/Yb (>8). The depleted Sr–Nd isotopic characteristics (εNd(T) = 3.5–6.4 and Isr = 0.7026–0.7055) and young two-stage model ages of HSE and LSE indicate that they were both derived from partial melting of juvenile lower crust that might be triggered by asthenosphere upwelling subsequent to a slab rollback event. However, the depths of initial melting might be different. The current evidence demonstrates that HSE in the Suyunhe deposit formed by partial melting of juvenile crust at depths of less than ∼33 km with a plagioclase residue, whereas that for LSE occurred at depths of >40 km where a garnet residue existed and the crust was thickened. The lower source depth, as well as subsequently strong plagioclase fractionation, results in the absence of adakite-like characteristics in HSE.The Ce4+/Ce3+and EuN/EuN1 ratios in zircons of HSE are much lower than ore-forming intrusions from porphyry Cu deposits in the Central Asian Orogenic Belt, but noticeably higher than barren intrusions from the Lachlan fold belt and ore-bearing intrusions from small-intermediate porphyry Mo deposits from the East Qinling–Dabie and the Nanling metallogenic belts, China, indicating that neither too high nor too low oxygen fugacities are favorable for large porphyry Mo deposits. Based on previous studies of adakitic rocks in the world, adakite-like LSE in the Suyunhe deposit are believed to have higher oxygen fugacities, and thus be less fertile than HSE. We finally suggest that adakites and adakite-like rocks are unproductive for porphyry Mo deposits.  相似文献   

16.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

17.
The Middle Miocene porphyry granitoid stocks of Meiduk and Parkam porphyry copper deposits are intruded in the north-western part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the south-eastern extension of the Urumieh-Dukhtar Magmatic Arc (UDMA) in Iran. The porphyritic to microgranular granitoids are mainly consist of quartz diorite, granodiorite and diorite. The whole rock geochemical analyses of these rocks reveals sub-alkaline, calc-alkaline, meta-peraluminous and I-type characteristics. Their geochemical characteristics such as Al2O3 content of 13.51–17.05 wt%, high Sr concentration (mostly >400 ppm), low Yb (an average of 0.74 ppm) and Y (an average of 9.02 ppm) contents, strongly differentiated REE patterns (La/Yb  20), lack of Eu anomaly (Eu/Eu1  1) are indicative of adakitic signature. Their enrichment in low field strength elements (LFSE) and conspicuous negative anomalies for Nb, Ta and Ti are typical of subduction related magmas. Detailed petrological studies and geochemical data indicated that Meiduk and Parkam porphyry granitoids were derived from amphibole fractionation of hydrous melts at a depth of >40 km in a post-collisional tectonic setting.  相似文献   

18.
The Baoligaomiao Formation, within the Hegenshan ophiolite-arc-accretion complex is an important segment to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB), world's largest Phanerozoic orogenic belt. In this study, we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the volcanic succession in the Baoligaomiao Formation. The volcanic succession can be divided into the lower sequence with zircon U-Pb ages in the range of 326.3 Ma–307.4 Ma and the upper sequence of 305.3 Ma. The succession belongs to two suites: calc-alkaline volcanics and high-Si rhyolites. The calc-alkaline volcanic rocks include basaltic andesite through andesite and dacite to rhyolite and their pyroclastic equivalents. These rocks exhibit a well-defined compositional trend from basaltic to rhyolitic magma, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. The calc-alkaline rocks have low initial 87Sr/86Sr (0.7023–0.7052), positive ɛNd(t) values (2.75–4.80), and their initial Pb isotopic compositions are 17.875–18.485 of 206Pb/204Pb, 15.481–15.520 of 207Pb/204Pb and 37.467–37.764 of 208Pb/204Pb, respectively. Geochemical and isotopic results suggest that the volcanic succession represents Carboniferous subduction-related, mature, continental arc volcanism. The outcrops of high-Si rhyolites are restricted to the northern edge of the continental arc, marking a transition zone between volcanic arc and back-arc basin, where they are interbedded with the calc-alkaline rocks in the lower sequence, and the upper sequence is composed only of high-Si rhyolites. The high-Si rhyolites have high SiO2 (71.12–81.76 wt%) and varied total alkali contents (K2O + Na2O = 5.46–10.58 wt%), low TiO2 (0.06–0.27 wt%), MgO (0.09–0.89 wt%) and CaO (0.08–0.72 wt%). Based on the presence of mafic alkali phenocrysts, such as arfvedsonite and siderophyllite, high Zr/Nb ratios (> 10) and peralkalinity index (PI) near unity, the high-Si rhyolites can be classified as peralkaline comendites. The high-Si rhyolites are characterized by unusually low Sr and Ba, and high abundance of Zr, Th, Nb, HREEs and Y. They show geochemical characteristics similar to those of typical A2-type granites including their high K2O + Na2O, Nb, Zr and Y, and high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the high-Si rhyolites were derived from discrete trachytic parent magma with fractional crystallization within shallow magma reservoirs. Their Nd-Pb isotopic characteristics are similar to those of the calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile continental arc crust. We observe that the widespread eruptions of A2-rhyolitic magmas (305.3 Ma–303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with voluminous intrusion of the bimodal magmas (304.3 Ma–299.3 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma–307 Ma). We envisage northward subduction and slab breakoff process resulting in an obvious change of the regional stress field to extensional setting within the Carboniferous continental arc running E-W for thousands of kilometers. Therefore, we propose the existence of an east-west-trending Carboniferous continental arc in the Hegenshan ophiolite-arc-accretion complex, with the slab breakoff event suggesting that the age of the upper sequence (305.3 ± 5.5 Ma) likely indicates the maximum age for the cessation of the northward subduction of the Hegenshan oceanic lithosphere.  相似文献   

19.
In this paper we report zircon U–Pb age, chemical compositions of rock-forming minerals, and whole-rock elemental and Sr–Nd isotopic data for the No. II mafic-ultramafic intrusive complex (N2MC) in the Quruqtagh area at the northeastern margin of the Tarim Block, northwestern China to evaluate its petrogenesis and tectonic significance. The N2MC with an exposure area of ca. 12 km2 has a funnel-shaped cross-section and intruded the Paleoproterozoic basement. U–Pb zircon dating gives a crystallization age of 760 ± 6 Ma. Rock types of the N2MC include lherzolite, pyroxenite, gabbro and minor diorite. Major elements geochemistry of these rocks exhibits a tholeiitic trend with a wide range of SiO2 contents (38.8–60 wt.%). On the other hand, they are systematically enriched in LILE, LREE and depleted in HFSE and HREE, thus leading to low HFSE/LREE ratios (e.g., Nb/La  0.3). Isotopically, the studied rocks are characterized by negative whole-rock εNd(t) values (? 7.6 to ? 2.8) and variable high (87Sr/86Sr)i (0.7095–0.7059). These features, together with chemical compositions of the rock-forming minerals and the presence of the primary phlogopite and hornblende, suggest that N2MC was likely formed via crystal fractionation/cumulation (with negligible crustal contamination) of a tholeiitic magma derived from a metasomatized subcontinental lithosphere mantle (SCLM) in an extensional environment. The enrichment of the mantle source could be ascribed to the metasomatism by subducted-slab-released fluids before partial melting. Overall, reported Neoproterozoic igneous rocks throughout the Tarim Block constitute two major phases of Neoproterozoic igneous activities, i.e., ca. 825–800 Ma and ca. 780–745 Ma, respectively. Similar to that of many other Rodinian continents, this feature is interpreted to be related to the two phases of Neoproterozoic mantle plume activity under the Rodinia. Furthermore, there exist two types of mafic-ultramafic complex at Quruqtagh, i.e., the ca. 820 Ma carbonatite-bearing and the ca. 760 Ma tholeiitic, which could reflect the presence of two different mantle sources.  相似文献   

20.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号