首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are and . The corresponding radii ranges for the particles, assuming densities from 7874-2500 kg m−3 are 0.7-4 μm and 2.6-6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027-0.21 and 0.016-0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3-1.26 AU, 0.4-1.0 and 0-60° for the first particle and 0.8-2.5 AU, 0.2-0.9 and 0-30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.  相似文献   

2.
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.  相似文献   

3.
We devised a numerical model of planetary ring in which the inelastic collision and the gravitation between ring particles are considered. We adopt Hill's equations and the differential algorithm of circular mesh for computation of the particle orbits. The evolutional processes are presented for different coefficient of restitution and dynamical optical depth . The results show that the semi-major axis and eccentricity of the ring particles are changed with and . We compute the average energies transferred and loss in inelastic collisions for various values of the parameters. The dynamical equilibrium properties are discussed in the different cases.  相似文献   

4.
We study the periodic orbits in a two dimensional dynamical system, symmetric with respect to both axes, with two equal or nearly equal frequencies. It is shown that the periodic orbits can be found directly from the equations of motion. The form of these orbits depends on the value of the coupling parameter . We verify the theoretical results by numerical calculations.  相似文献   

5.
This paper deals with dynamics of impact ejecta from Phobos and Deimos initially on near-circular equatorial orbits around Mars. For particles emitted in a wide size regime of 1 micron and greater, and taking into account the typical particle lifetimes to be less than 100 years, the motion is governed by two perturbing forces: solar radiation pressure and influence of Mars' oblateness. The equations of motion of particles in Lagrangian non-singular elements are deduced and solved, both analytically and numerically, for different-sized ejecta. We state that the coupled effect of both forces above is essential so that on no account can the oblateness of Mars are be neglected. The dynamics of grains prove to be quite different for the ejecta of Phobos and Deimos. For Deimos, the qualitative results are relatively simple and imply oscillations of eccentricity and long-term variations of orbital inclination, with amplitudes and periods both depending on grain size. For Phobos, the dynamics are shown to be much more complicated, and we discuss it in detail. We have found an intriguous peculiar behavior of debris near 300 µm in size. Another finding is that almost all the Phobos ejecta with radii less than 30 µm (against the values of 5 to 20 µm adopted earlier by many authors) should be rapidly lost by collisions with martian surface. The results of the paper may be the base for constructing an improved model of dust belts that presumably exist around Mars.  相似文献   

6.
It is proposed that radiation belts similar to the ones in the planetary magnetosphere can exist for a pulsar with a relatively long period and a strong magnetic field. In the belts located in the closed field line region near the light cylinder relativistic pairs are trapped and maintained at a density substantially higher than the local Goldreich–Julian corotation density. The trapped plasma can be supplied and replenished by either direct injection of relativistic pairs from acceleration of externally supplied particles in a dormant outer gap or in situ ionization of the accreted neutral material in the trapping region. The radiation belts can be disrupted by waves that are excited in the region as the result of plasma instabilities or emitted from the surface due to starquakes or stellar oscillations. The disruption can cause an intermittent particle precipitation towards the star producing radio bursts. It is suggested that such bursts may be seen as rotating radio transients.  相似文献   

7.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

8.
The population of Near-Earth Asteroids (NEAs) appears to be overabundant at sizes smaller than 50m, compared to a power-law extrapolation from kilometer-sized objects. Several of these small NEAs are also concentrated on low-eccentricity orbits, where a few larger Earth-crossers are observed, and are called Small Earth-Approachers (SEAs). Their source region as well as the dynamical mechanisms involved in their transport close to the Earth on low-eccentricity orbits have not yet been determined. In this paper, we present our numerical and statistical study of the production and dynamical evolution of these SEAs. We first show that three main sources of Earth-crossers which are, according to recent simulations, the 3/1 and 6 resonances in the main belt, and the Mars-crosser population, are not able to produce as many bodies on SEAs-like orbits compared to other Earth-crossing orbits as has been inferred from observations. From these sources, SEAs-like orbits are reached through the interplay of two required mechanisms: secular resonances and planetary close approaches. However, the time spent on these orbits remains smaller than 1 Myr as confirmed by the study of the evolutions of 11 observed SEAs which also reveal the action of various mechanisms such as close approaches to planets and/or secular resonances. Therefore, our results present some mechanisms which can be responsible for their production but none that would preserve the lifetime of the SEAs sufficiently to enhance their abundance relative to other Earth-crossing orbits at the level observed. The overabundance of the SEA population, if real, remains a problem and could be related to the influence of collisional disruption and tidal splitting of Earth-crossers, as well as to observational biases that might account for a discrepancy between theory and observation.  相似文献   

9.
We discuss the correlations between the luminosities of radio pulsars in various frequency ranges and the magnetic fields on the light cylinder. These correlations suggest that the observed emission is generated in outer layers of the pulsar magnetospheres by the synchrotron mechanism. To calculate the distribution functions of the relativistic particles in the generation region, we use a model of quasilinear interactions between the waves excited by cyclotron instability and particles of the primary beam and the secondary electron—positron plasma. We derive a formula for calculating the X-ray luminosity L x of radio pulsars. A strong correlation was found between L x and the parameter \(\dot P_{ - 15} /P^{3.5}\), where P is the neutron-star rotation period, in close agreement with this formula. The latter makes it possible to predict the detection of X-ray emission from more than a hundred (114) known radio pulsars. We show that the Lorentz factors of the secondary particles are small (γ p = 1.5–8.5), implying that the magnetic field near the neutron-star surface in these objects is multipolar. It follows from our model that almost all of the millisecond pulsars must emit X-ray synchrotron radiation. This conclusion differs from predictions of other models and can be used to test the theory under consideration. The list of potential X-ray radiators presented here can be used to search for X-ray sources with existing instruments.  相似文献   

10.
Many physical systems can be modeled as scattering problems. For example, the motions of stars escaping from a galaxy can be described using a potential with two or more escape routes. Each escape route is crossed by an unstable Lyapunov orbit. The region between the two Lyapunov orbits is where the particle interacts with the system. We study a simple dynamical system with escapes using a suitably selected surface of section. The surface of section is partitioned in different escape regions which are defined by the intersections of the asymptotic manifolds of the Lyapunov orbits with the surface of section. The asymptotic curves of the other unstable periodic orbits form spirals around various escape regions. These manifolds, together with the manifolds of the Lyapunov orbits, govern the transport between different parts of the phase space. We study in detail the form of the asymptotic manifolds of a central unstable periodic orbit, the form of the escape regions and the infinite spirals of the asymptotic manifolds around the escape regions. We compute the escape rate for different values of the energy. In particular, we give the percentage of orbits that escape after a finite number of iterations. In a system with escapes one cannot define a Poincaré recurrence time, because the available phase space is infinite. However, for certain domains inside the lobes of the asymptotic manifolds there is a finite minimum recurrence time. We find the minimum recurrence time as a function of the energy.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
12.
A 15 year project to establish a dynamical reference system utilizing ground-based and Space Telescope observations of 34 minor planets is being undertaken. The orbits of these minor planets will be knit into a common system through the use of crossing point observations. The system of orbits thus established can be used to measure long arcs in the sky (similar to the function of a transit circle) and can be used to detect individual star errors as well as residual periodic effects in the fundamental reference system. The minor planet dynamical reference system will also provide an independent method to establish the zero point and the solid-body rotation of the HIPPARCOS reference system.  相似文献   

13.
We briefly support on some new results about the influence of the rotation and finite size of a stellar radiation source on dust particle orbits, emphasizing the possibility of stable orbits, in the equatorial plane, for dust sizes near the radiation pressure limit.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

14.
The dynamical evolution of dust particles forming a circumstellar disk around Pictoris is followed by numerical simulations on a Connection Machine. The disk appears to be cleared inside a radius of about 20 AU. We integrate simultaneously the orbits of 8,000 dust particles subjected to Poynting-Robertson drag and perturbed by one alleged planet. The simulations show that a planet revolving about Pictoris at a mean distance of 20 AU with a mass of at least 2 * 10–5 central stellar mass can confine the disk by outer resonance trapping. The azimuthal density distribution of particles which shows very strong variations. appears to be stationary in a frame rotating with the planet.  相似文献   

15.
The restricted three-body problem is generalized with the inclusion of solar radiation pressure. For small particles (typically 1 m to 1 mm) the familiar equilibrium triangular points L4 and L5 no longer exist. However libration orbits are not completely destroyed, although an effect of resonance causes their amplitude to be very large, for a particle initially at rest at either of the triangular point. Finally the results of a study of the linearized equations of motion, supplemented by a numerical integration, rule out the possibility of an accumulation of dust at the Earth-Moon lagrangian triangular points.  相似文献   

16.
The abundance of helium relative to hydrogen is spectroscopically determined in prominences and in the chromosphere by using 1952, 1958, 1962 and 1966 eclipse data. Care is taken in the intensity calibration of emission lines, the self-absorption, and the departure from local thermodynamic equilibrium. We find from the line profiles and intensities of prominences and the chromosphere that the neutral helium lines are emitted in the metal-hydrogen emitting region where the kinetic temperature is low enough, 6000 8000 K, so that only the ionization due to UV radiation from the corona can explain the intensity of neutral helium emission. Also we find that the intensity ratio of Hei 3888.65 to H8 3889.05 increases towards the upper boundaries of prominences and of the chromosphere and that it approaches to a universal limiting value, both in various prominences or in the chromosphere, where it is considered that the ionization of neutral helium and hydrogen is nearly complete. From these facts the helium to hydrogen number ratio is found to be 6.5 ± 1.5%.A new schematic model of the chromosphere is presented where spicules have no hot region of emitting neutral helium lines. Here it is suggested that the kinetic temperature of spicules, 6000 8000 K, would be primarily determined by the radiation temperature of the corona and the transition region beyond the Lyman continuum of hydrogen which happens to be around those temperatures.  相似文献   

17.
We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars’ oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 104 years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius≈5- may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size (≈10-) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos.  相似文献   

18.
The aim of this work is to understand the absence of objects along the orbits of Mimas and Enceladus in contrast to their presence at the orbits of neighbouring Tethys and Dione from the point of view of dynamical stability. Large scale numerical simulations of 360 test particles within the coorbital regions of these four saturnian satellites were carried out for 4×105 yr or 1.6×108 revolutions of the innermost moon Mimas. The tidal forcing of the satellites' orbits was not taken into account in these simulations. We have quantitatively reproduced the Mimas-Tethys 4:2 and Enceladus-Dione 2:1 mean motion resonances in the system and devised a scheme by which the parameter space of the coorbital resonance is sampled uniformly by our test particles. We observe that 6 out of the 36 integrated horseshoe particles of Enceladus escaped the coorbital region. All 54 tadpole particles remained stable. The main cause of instability for Enceladus coorbitals appears to be the overlap between the coorbital resonance and the 2:1 mean motion resonance between the particle and Dione. This leads particles with starting semimajor axes near the horseshoe-tadpole separatrix to be ejected from the resonance, as proposed by Morais [Morais, M.H.M., 2000. The effect of secular perturbations and mean motion resonances on trojan dynamics. Ph.D. thesis, Univ. of London], over timescales of ∼8×107 revolutions of Enceladus. For Mimas we observe a larger number of coorbital escapes overall, both of tadpole (7/54) and horseshoe (29/36) librators. An analysis of the observed dynamical evolution suggests a two-stage process at work: The semimajor axis of particles with starting conditions near the horseshoe-tadpole separatrix undergoes a slow random walk over timescales of 105 yr through a mechanism similar to that at Enceladus but involving the 4:2 inclination resonance with Tethys. These particles are eventually injected into a region of short-term (?104 yr) instability just inside the nominal boundary of stable, symmetric horseshoe motion. The presence of the 4:2 eccentricity triplet at that location is the most likely culprit for the instability. In both the cases of Mimas and Enceladus small-amplitude tadpoles remain stable until the end of the integration. The existence of fast escapers at Mimas provides a dynamical avenue for the short-term survival of impact ejecta in horseshoe orbits within Mimas' coorbital region.  相似文献   

19.
We show that it can be possible to obtain lower limits on the jet Lorentz factors in superluminal very high energy (VHE) -ray blazars (e.g. Mrk, 421) which are more restrict than that ones derived only from the observations of superluminal motion. To do that we need to define some parameters of the blazars (i.e. accretion disk luminosity, disk inner radius, or disk temperature at the inner radius) which can be fixed in some sources based on the optical-UV observations. Moreover the knowledge is required on: (a) the variability time scale of radiation emitted from the shock (blob) region; (b) the maximum energy of emitted -rays; (c) and the value of an apparent speed of the shock from measurements of superluminal motion in the source. Based on the available observations of Mrk 421 and QSO 1633+382 we put constraints on the jet Lorentz factor in these sources as a function of their disk inner radius.  相似文献   

20.
In a simplified model of the Earth-Moon-Sun system based on the restricted circular 3-dimensional 3-body problem, it is possible to find numerically a set of 8 periodic orbits whose time evolutions closely resemble that of the Moon's orbit. These orbits have a period of 223 synodic months (i.e. the period of the Saros cycle known for more than two millennia as a means of predicting eclipses), and are characterized by a secular rotation of the argument of perigee . Periodic orbits of longer durations exhibiting this last feature are very abundant in Earth-Moon-Sun dynamical models. Their arrangement in the space of the mean orbital elements- for various values of the lunar mean motion is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号