首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

2.
Niobium and Ta concentrations in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate rock glasses and the NIST SRM 610–614 synthetic soda‐lime glasses were determined by 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. Measured Nb and Ta values of MPI‐DING glasses were found to be consistently lower than the recommended values by about 15% and 25%, respectively, if calibration was undertaken using commonly accepted values of NIST SRM 610 given by Pearce et al. Analytical precision, as given by the 1 s relative standard deviation (% RSD) was less than 10% for Nb and Ta at concentrations higher than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with correlation coefficients of ‐0.94 for Nb and ‐0.96 for Ta. This trend indicates that the analytical precision follows counting statistics and thus most of the measurement uncertainty was analytical in origin and not due to chemical heterogeneities. Large differences between measured and expected Nb and Ta in glasses GOR128‐G and GOR132‐G are likely to have been caused by the high RSDs associated with their very low concentrations. However, this cannot explain the large differences between measured and expected Nb and Ta in other MPI‐DING glasses, since the differences are normally higher than RSD by a factor of 3. Count rates for Nb and Ta, normalised to Ca sensitivity, for the MPI‐DING, USGS and NIST SRM 612–614 glasses were used to construct calibration curves for determining NIST SRM 610 concentrations at crater diameters ranging from 16 (im to 60 μm. The excellent correlation between the Nb/Ca1μgg‐1 signal (Nb represents the Nb signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Nb concentration, and between the Ta/Ca1μg g‐1 signal (where Ta represents the Ta signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Ta concentration (R2= 0.9992–1.00) in the various glass matrices suggests that matrix‐dependent fractionation for Nb, Ta and Ca was insignificant under the given instrumental conditions. The results confirm that calibration reference values of Nb and Ta in NIST SRM 610 given by Pearce et al. are about 16% and 28% lower, respectively. We thus propose a revision of the preferred value for Nb from 419.4 ± 57.6 μg g?1 to 485 ± 5 μg g?1 (1 s) and for Ta from 376.6 ± 77.6 μg g?1 to 482 ± 4 μg g?1 (Is) in NIST SRM 610. Using these revised values for external calibration, most of the determined average values of MPI‐DING, USGS and NIST SRM 612–614 reference glasses agree within 3% with the calculated means of reported reference values. Bulk analysis of NIST SRM 610 by standard additions using membrane desolvation ICP‐MS gave Nb = 479 ± 6 μg g?1 (1 s) and Ta = 468 ± 7 μg g?1 (1 s), which agree with the above revised values within 3%.  相似文献   

3.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

4.
Mass fractions of Sn and In were determined in sixteen geological reference materials including basaltic/mafic (BCR‐2, BE‐N, BHVO‐1, BHVO‐2, BIR‐1, OKUM, W‐2, WS‐E), ultramafic (DTS‐2b, MUH‐1, PCC‐1, UB‐N) and felsic/sedimentary reference materials (AGV‐2, JA‐1, SdAR‐M2, SdAR‐H1). Extensive digestion and ion exchange separation tests were carried out in order to provide high yields (> 90% for Sn, > 85% for In), low total procedural blanks (~ 1 ng for Sn, < 3 pg for In) and low analytical uncertainties for the elements of interest in a variety of silicate sample matrices. Replicate analyses (= 2–13) of Sn–In mass fractions gave combined measurement uncertainties (2u) that were generally < 3% and in agreement with literature data, where available. We present the first high‐precision In data for reference materials OKUM (32.1 ± 1.5 ng g?1), DTS‐2b (2.03 ± 0.25 ng g?1), MUH‐1 (6.44 ± 0.30 ng g?1) and PCC‐1 (3.55 ± 0.35 ng g?1) as well as the first Sn data for MUH‐1 (0.057 ± 0.010 μg g?1) and DTS‐2b (0.623 ± 0.018 μg g?1).  相似文献   

5.
The strong spectral interference between Br‐ and Al‐induced X‐ray lines hampers the utilisation of electron probe microanalysis (EPMA) for measuring Br mass fractions in Al‐bearing minerals and glasses. Through measuring Br‐free Al‐bearing materials, we established an EPMA method to quantify the overlap from AlKα on BrLβ, which can be expressed as a linear function of the Al2O3 content. The count rate of the BrLβ peak signal was enhanced by high beam currents and long measurement times. Application of this EPMA method to Al‐ and Br‐bearing materials, such as sodalite and scapolite, and to five experimental glasses yielded Br mass fractions (in the range of 250–4000 μg g?1) that are consistent with those measured by microbeam synchrotron X‐ray fluorescence (μ‐SXRF) spectrometry. The EPMA method has an estimated detection limit of ~ 100–300 μg g?1. We propose that this method is useful for measuring Br mass fractions (hundreds to thousands of μg g?1) in Al‐bearing minerals and glasses, including those produced in Br‐doped experiments. In addition, the natural marialitic scapolite (ON70) from Mpwapwa (Tanzania) containing homogeneously distributed high mass fractions of Br (2058 ± 56 μg g?1) and Cl (1.98 ± 0.03% m/m) is an ideal reference material for future in situ analyses.  相似文献   

6.
A laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) method was developed to obtain precise and accurate Pb isotopic ratio measurements in low‐Pb materials (< 10 μg g?1) using a combination of Faraday cups and ion counters (FC–IC). The low abundance 204Pb (~ 1.4%) was collected using an IC. A NBS 981 standard solution was used to cross‐calculate the FC–IC gain and to investigate the signal response characteristics of the IC. A significant, continuous and linear decrease in the FC–IC gain was observed within 1 hr, but this drift could be corrected using the calibrator‐sample‐calibrator bracketing method. In addition, a non‐linear response of the IC used in this study was observed and corrected by a non‐linear correction algorithm, which was established by measuring a series of gravimetrically prepared NBS 981 standard solutions (NIST SRM 981). Compared with the conventional arrangement, the use of the newly designed X skimmer cone and Jet sample cone improved the signal intensities from Pb isotopes by a factor of 1.9. Compared with only Faraday cups, using a combination FC–IC array was found to enhance the measurement repeatability (RSD) of 20xPb/204Pb by approximately one order of magnitude when the 204Pb intensity was < 8 mV. Eight natural glasses and the NIST SRM 612 reference material glass (as a calibration material) were measured to evaluate the new protocol for Pb isotope determination. The analytical results were in agreement with the reference values within 2s measurement uncertainties. For MPI‐DING ATHO‐G (5.67 μg g?1 total Pb), KL2‐G (2.07 μg g?1 total Pb) and ML3B‐G (1.38 μg g?1 total Pb), the typical accuracies of 20xPb/204Pb were 0.09% of preferred values with precisions of < 0.33% (2RSD). The Pb isotope ratios in feldspars from granodiorite and within mafic microgranular enclaves (MMEs) from the Fangshan pluton, North China, were measured using the present method. The Pb isotopic compositions of feldspars from the whole host granodiorite show that that are radiogenic in the margin zone and gradually become less radiogenic. For the MMEs, the Pb isotopic compositions of feldspars are highly variable and overlap with those of the whole host granodiorite. For single‐grain feldspar, the strong rim‐core‐rim variations of the Pb isotopic compositions and trace elements are interpreted to have been generated via magma mixing. These results suggest that the Fangshan pluton underwent magma mixing of mantle‐derived mafic magmas with felsic magmas, and the proportion of the mafic magma influx decreased over time.  相似文献   

7.
New analytical results are reported for rarely determined elements Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl and Bi in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate glasses and the NIST SRM 610‐614 synthetic soda‐lime glasses using 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. The method used involved external calibration against GOR132‐G for Ir and NIST SRM 610 for other elements, internal standardisation using Ca, and ablation with a crater diameter of 160 μm and a pulsed laser repetition rate of 10 Hz. Small amounts of nitrogen (5 ml min?1) were added to the central channel gas of the plasma to improve the limits of detection for most of these elements by a factor of 1.2–2.5 and to reduce the oxide interference level to 0.02% (ThO+/Th+). Under these conditions, the LODs for most of these rarely determined elements were within the range 0.1 to 10 ng g?1. The operating conditions that were required to minimise ICP‐induced fractionation (U+/Th+≈ 1) in the mode without nitrogen were accompanied by a 50–60% reduction in sensitivity for elements such as Ca, Au and Pt. In contrast, ICP‐induced fractionation could be minimised (U+/Th+≈ 1) with no loss of analyte sensitivity in the nitrogen mode. Interferences of CuAr+, ZnAr+, Cd+, Pb2+ and Sn+ on Pd+, Rh+, Cd+ and In+ were corrected. Oxide interferences were not considered due to their lower production rate. Analytical precision, as given by one relative standard deviation (% RSD) was less than 15% for most of the elements present at concentrations greater than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with a correlation coefficient of ?0.76. This trend indicates that possible chemical heterogeneities for most of these elements are smaller than the analytical uncertainty. Our results for Be, B, Ge, Sb and W are generally in good agreement with their reference values. In contrast, other elements in many of the reference glasses have only information values, upper limits or even no values, which restrict any detailed evaluation of the accuracy of the determined values. However, concentrations from multiple isotopes of one element analysed in this study showed excellent agreement, which guarantee the quality of our data to a certain extent.  相似文献   

8.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   

9.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

10.
Thallium stable isotope ratio and mass fraction measurements were performed on sixteen geological reference materials spanning three orders of magnitude in thallium mass fraction, including both whole rock and partially separated mineral powders. For stable isotope ratio measurements, a minimum of three independent digestions of each reference material was obtained. High‐precision trace element measurements (including Tl) were also performed for the majority of these RMs. The range of Tl mass fractions represented is 10 ng g?1 to 16 μg g?1, and Tl stable isotope ratios (reported for historical reasons as ε205Tl relative to NIST SRM 997) span the range ?4 to +2. With the exception – attributed to between‐bottle heterogeneity – of G‐2, the majority of data are in good agreement with published or certified values, where available. The precision of mean of independent measurement results between independent dissolutions suggests that, for the majority of materials analysed, a minimum digested mass of 100 mg is recommended to mitigate the impact of small‐scale powder heterogeneity. Of the sixteen materials analysed, we therefore recommend for use as Tl reference materials the USGS materials BCR‐2, COQ‐1, GSP‐2 and STM‐1; CRPG materials AL‐I, AN‐G, FK‐N, ISH‐G, MDO‐G, Mica‐Fe, Mica‐Mg and UB‐N; NIST SRM 607 and OREAS14P.  相似文献   

11.
Experimental determination of the pressure and temperature controls on Ti solubility in quartz provides a calibration of the Ti‐in‐quartz (TitaniQ) geothermometer applicable to geological conditions up to ~ 20 kbar. We present a new method for determining 48Ti mass fractions in quartz by LA‐ICP‐MS at the 1 μg g?1 level, relevant to quartz in HP‐LT terranes. We suggest that natural quartz such as the low‐CL rims of the Bishop Tuff quartz (determined by EPMA; 41 ± 2 μg g?1 Ti, 2s) is more suitable than NIST reference glasses as a reference material for low Ti mass fractions because matrix effects are limited, Ca isobaric interferences are avoided, and polyatomic interferences at mass 48 are insignificant, thus allowing for the use of 48Ti as a normalising mass. Average titanium mass fraction from thirty‐three analyses of low temperature quartz from the Czech Erzgebirge is 0.9 ± 0.2 μg g?1 (2s) using 48Ti as a normalising mass and Bishop Tuff quartz rims as a reference material. The 2s average analytical uncertainty for individual analyses of 48Ti is 8% for 50 μm spots and 7% for 100 μm spots, which offers much greater accuracy than the 21–41% uncertainty (2s) incurred from using 49Ti as an analyte.  相似文献   

12.
This work presents an evaluation of various methods for in situ high‐precision Sr and Pb isotopic determination in archaeological glass (containing 100–500 μg g?1 target element) by nanosecond laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (ns‐LA‐MC‐ICP‐MS). A set of four soda‐lime silicate glasses, Corning A–D, mimicking the composition of archaeological glass and produced by the Corning Museum of Glass (Corning, New York, USA), were investigated as candidates for matrix‐matched reference materials for use in the analysis of archaeological glass. Common geological reference materials with known isotopic compositions (USGS basalt glasses BHVO‐2G, GSE‐1G and NKT‐1G, soda‐lime silicate glass NIST SRM 610 and several archaeological glass samples with known Sr isotopic composition) were used to evaluate the ns‐LA‐MC‐ICP‐MS analytical procedures. When available, ns‐LA‐MC‐ICP‐MS results for the Corning glasses are reported. These were found to be in good agreement with results obtained via pneumatic nebulisation (pn) MC‐ICP‐MS after digestion of the glass matrix and target element isolation. The presence of potential spectral interference from doubly charged rare earth element (REE) ions affecting Sr isotopic determination was investigated by admixing Er and Yb aerosols by means of pneumatic nebulisation into the gas flow from the laser ablation system. It was shown that doubly charged REE ions affect the Sr isotope ratios, but that this could be circumvented by operating the instrument at higher mass resolution. Multiple strategies to correct for instrumental mass discrimination in ns‐LA‐MC‐ICP‐MS and the effects of relevant interferences were evaluated. Application of common glass reference materials with basaltic matrices for correction of ns‐LA‐MC‐ICP‐MS isotope data of archaeological glasses results in inaccurate Pb isotope ratios, rendering application of matrix‐matched reference materials indispensable. Correction for instrumental mass discrimination using the exponential law, with the application of Tl as an internal isotopic standard element introduced by pneumatic nebulisation and Corning D as bracketing isotopic calibrator, provided the most accurate results for Pb isotope ratio measurements in archaeological glass. Mass bias correction relying on the power law, combined with intra‐element internal correction, assuming a constant 88Sr/86Sr ratio, yielded the most accurate results for 87Sr/86Sr determination in archaeological glasses  相似文献   

13.
The low‐Sr content (generally < 100 μg g?1) in clinopyroxene from peridotite makes accurate Sr isotopic determination by LA‐MC‐ICP‐MS a challenge. The effects of adding N2 to the sample gas and using a guard electrode (GE) on instrumental sensitivity for Sr isotopic determination by LA‐MC‐ICP‐MS were investigated. Results revealed no significant sensitivity enhancement of Sr by adding N2 to the ICP. Although using a GE led to a two‐fold sensitivity enhancement, it significantly increased the yield of polyatomic ion interferences of Ca‐related ions and TiAr+ on Sr isotopes. Applying the method established in this work, 87Sr/86Sr ratios (Rb/Sr < 0.14) of natural clinopyroxene from mantle and silicate glasses were accurately measured with similar measurement repeatability (0.0009–0.00006, 2SE) to previous studies but using a smaller spot size of 120 μm and low‐to‐moderate Sr content (30–518 μg g?1). The measurement reproducibility was 0.0004 (2s, n = 33) for a sample with 100 μg g?1 Sr. Destruction of the crystal structure by sample fusion showed no effect on Sr isotopic determination. Synthesised glasses with major element compositions similar to natural clinopyroxene have the potential to be adopted as reference materials for Sr isotopic determination by LA‐MC‐ICP‐MS.  相似文献   

14.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

15.
Inductively coupled plasma‐mass spectrometry after lithium metaborate fusion and digestion was used to measure the rare earth element (REE) mass fractions of several reference materials including NIST SRM 1632a, a historical bituminous Pennsylvania seam coal. While most of the REE mass fractions measured in this study were consistent with the published consensus data, the measured mass fraction of thulium for NIST SRM 1632a was consistently lower compared with the published data. Chondrite normalisation of the published consensus data for NIST SRM 1632a produced a positive thulium anomaly (Tm = 1.78), which is inconsistent with a terrestrial source of sediment. Normalisation of REE mass fractions collected in this study produced no significant Tm anomaly (Tm = 0.93), which agrees with the sedimentary depositional environment of coal. Therefore, a revised mass fraction of 0.16 mg kg?1 Tm in NIST SRM 1632a is recommended.  相似文献   

16.
To evaluate the homogeneity of geological reference material BIR‐1a (basalt; United States Geological Survey, USGS) for Re‐Os isotopic studies at the 0.2–1.0 g test portion size level, sixty‐three precise measurement results of Re and Os mass fractions and isotope amount ratios were obtained over an 18‐month period. These data reveal that the reference material has higher Re (0.691 ± 0.022 ng g?1, 2s,= 63) and lower Os mass fractions (0.343 ± 0.089 ng g?1, 2s,= 63) than UB‐N (serpentinite, CRPG) and is homogeneous in 187Os/188Os isotope amount ratio (0.13371 ± 0.00092, 2s,= 63) at the 0.2–1.0 g test portion size level. The results are essentially consistent with previous views indicating that BIR‐1a gives precise measurement results for Re‐Os isotope amount ratio measurements at the 1 g test portion size level (Ishikawa et al., Chemical Geology, 2014, 384, 27–46; Meisel and Horan, Reviews in Mineralogy and Geochemistry, 2016, 81, 89–106). Based on these new Re‐Os data and previous studies, we propose BIR‐1a as a useful reference material that can be used in method validation and quality control and interlaboratory comparisons for studies dealing with mafic geological samples at test portion sizes of > 0.4 g.  相似文献   

17.
A two‐step Th isolation protocol, involving micro‐columns of TRU‐Spec extraction chromatography material and AG1 resin, was evaluated. The MC‐ICP‐MS procedure included 232Th tailing characterisation and correction, and calibrator bracketing using an in‐house standard solution (ThS1) to correct for instrumental mass bias and Faraday cup to secondary electron multiplier relative gain. Repeated analyses of reference solutions (UCSC Th ‘A’, WUN, OU Th ‘U’, IRMM‐36) were consistent with published data. Six reference materials (A‐THO, BCR‐2, AGV‐2, BHVO‐2, BE‐N and BIR‐1) were processed. The average 230Th/232Th values obtained for these samples are in excellent agreement with published data. In addition, we report the first 230Th/232Th values for BE‐N and BIR‐1. The intermediate precisions for rock samples ranged from ± 0.24 to ± 0.49% (2 RSD) and were similar to those achieved for synthetic solutions, thereby supporting the overall validity of the chemical separation, data acquisition and reduction procedures. Counting statistics on the 230Th isotope was the most significant source of uncertainty. The intermediate precision of the mean 230Th/232Th for the Th‐depleted BIR‐1 (5.64 × 10?6 ± 0.27%, 2 RSD) is in the range of the analyses of other reference materials analysed in this study.  相似文献   

18.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

19.
We present an improved method for the determination of the boron isotopic composition of volcanic glasses with boron concentrations of as low as 0.4–2.5 μg g?1, as is typical for mid‐ocean ridge basalt glasses. The analyses were completed by secondary ion mass spectrometry using a Cameca 1280 large‐radius ion microprobe. Transmission and stability of the instrument and analytical protocol were optimised, which led to an improvement of precision and reduction in surface contamination and analysis time compared with earlier studies. Accuracy, reproducibility (0.4–2.3‰, 2 RSD), measurement repeatability (2 RSE = 2.5–4.0‰ for a single spot with [B] = 1 μg g?1), matrix effects (? 0.5‰ among komatiitic, dacitic and rhyolitic glass), machine drift (no internal drift; long‐term drift: ~ 0.1‰ hr?1), contamination (~ 3–8 ng g?1) and machine background (0.093 s?1) were quantified and their influence on samples with low B concentrations was determined. The newly developed set‐up was capable of determining the B isotopic composition of basaltic glass with 1 μg g?1 B with a precision and accuracy of ± 1.5‰ (2 RSE) by completing 4–5 consecutive spot analyses with a spatial resolution of 30 μm × 30 μm. Samples with slightly higher concentrations (≥ 2.5 μg g?1) could be analysed with a precision of better than ± 2‰ (internal 2 RSE) with a single spot analysis, which took 32 min.  相似文献   

20.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号