首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Epikarst exerts a strong control on run‐off generation in karst regions, but it is still unclear in karst regions. Our study aimed to demonstrate the effect of epikarst on near‐surface hydrological processes in a subtropical cockpit karst region of southwest China, using plot‐scale rainfall simulation experiments with different rainfall intensities (low and high) and antecedent moisture conditions (dry and wet). A trench excavated to the epikarst lower boundary allowed identification of flow pathways in the entire soil–epikarst architecture system, thus facilitating the water balance calculations using a conceptual model with the assumption of a two‐stage hydrological evolution. More than 70% of the total rainfall water moved vertically through the shallow soil layer and then was redistributed by the epikarst as subsurface flow occurring on the soil–epikarst interface, depression filling on epikarst surface, water held by epikarst and deep percolation. Epikarst water regulation capacity, defined as the sum of depression filling on epikarst surface, water held by epikarst, epikarst seepage flow and deep percolation, was 58 mm (wet antecedent condition) and 223 mm (dry antecedent condition). Total run‐off from the soil–epikarst system was dominated by saturated subsurface flow showing a threshold process controlled by epikarst storage capacity (storing as much as 181 mm of rainfall water under dry antecedent condition). Our study proved that despite the epikarst being relatively poorly developed and covered by a soil mantle, it still exerted a strong influence on near‐surface hydrological processes and thus should be adequately considered in future modelling of water recharge and depletion dynamics in this integrated soil–epikarst system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Hillslopes have complex three‐dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslope‐storage Boussinesq (HSB) model with the infinite slope stability method. The HSB model is based on the continuity and Darcy equations expressed in terms of storage along the hillslope. Solutions of the HSB equation account explicitly for plan shape by introducing the hillslope width function and for profile curvature through the bedrock slope angle and the hillslope soil depth function. The presented model is composed of three parts: a topography model conceptualizing three‐dimensional soil mantled landscapes, a dynamic hydrology model for shallow subsurface flow and water table depth (HSB model) and an infinite slope stability method based on the Mohr–Coulomb failure law. The resulting hillslope‐storage Boussinesq stability model (HSB‐SM) is able to simulate rain‐induced shallow landsliding on hillslopes with non‐constant bedrock slope and non‐parallel plan shape. We apply the model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex) and three different plan shapes (convergent, parallel, divergent). In the presented model, the unsaturated storage has been calculated based on the unit head gradient assumption. To relax this assumption and to investigate the effect of neglecting the variations of unsaturated storage on the assessment of slope stability in the transient case, we also combine a coupled model of saturated and unsaturated storage and the infinite slope stability method. The results show that the variations of the unsaturated zone storage do not play a critical role in hillslope stability. Therefore, it can be concluded that the presented dynamic slope stability model (HSB‐SM) can be used safely for slope stability analysis on complex hillslopes. Our results show that after a certain period of rainfall the convergent hillslopes with concave and straight profiles become unstable more quickly than others, whilst divergent convex hillslopes remain stable (even after intense rainfall). In addition, the relation between subsurface flow and hillslope stability has been investigated. Our analyses show that the minimum safety factor (FS) occurs when the rate of subsurface flow is a maximum. In fact, by increasing the subsurface flow, stability decreases for all hillslope shapes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of ?1.0 to ?0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.  相似文献   

4.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

5.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Recent studies have highlighted the agronomic and environmental importance of phosphorus (P) movement through the soil profile. Thus, faced with challenges such as high‐profile cases of P enrichment of surface water, better understanding of nutrient movement through soil is needed to better manage agricultural fertilizers and manures and their contribution to water quality degradation. In particular, field‐scale research is especially needed in soils with preferential flow transport pathways. Thus, we collected nitrogen (N) and P transport data in run‐off and seepage (lateral subsurface return flow) from 13 field‐ and farm‐scale watersheds on Vertisols in Central Texas for a 14‐year period. For 2004–2017, seepage accounted for ~20% of the total surface flow, and nutrient concentrations were generally similar in run‐off and seepage. As surface run‐off contributed ~80% of the flow, it follows that median annual N and P loads in run‐off were significantly greater than in seepage for every watershed. N loads in both run‐off and seepage flow from cultivated land were an order of magnitude greater than in native prairie and improved pasture, and the highest run‐off and seepage P loads both occurred on cultivated land with organic fertilizer sources. Increasing watershed scale (size) did not to produce consistent patterns in N or P loss in run‐off or seepage. Land use and watershed scale produced significant differences in seepage volume but did not affect run‐off volumes or total surface flow/rainfall. Although less significant in terms of total offsite flux, nutrient movement in vadose zones has important agronomic and environmental implications as considerable N and P are transported through and within the root zone and eventually offsite. And in terms of P, this contradicts the traditionally held scientific viewpoint that P movement through the vadose zone is unimportant agronomically and environmentally.  相似文献   

7.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The hydrodynamic characterization of the epikarst, the shallow part of the unsaturated zone in karstic systems, has always been challenging for geophysical methods. This work investigates the feasibility of coupling time‐lapse refraction seismic data with petrophysical and hydrologic models for the quantitative determination of water storage and residence time at shallow depth in carbonate rocks. The Biot–Gassmann fluid substitution model describing the seismic velocity variations with water saturation at low frequencies needs to be modified for this lithology. I propose to include a saturation‐dependent rock‐frame weakening to take into account water–rock interactions. A Bayesian inversion workflow is presented to estimate the water content from seismic velocities measured at variable saturations. The procedure is tested first with already published laboratory measurements on core samples, and the results show that it is possible to estimate the water content and its uncertainty. The validated procedure is then applied to a time‐lapse seismic study to locate and quantify seasonal water storage at shallow depth along a seismic profile. The residence time of the water in the shallow layers is estimated by coupling the time‐lapse seismic measurements with rainfall chronicles, simple flow equations, and the petrophysical model. The daily water input computed from the chronicles is used to constraint the inversion of seismic velocities for the daily saturation state and the hydrodynamic parameters of the flow model. The workflow is applied to a real monitoring case, and the results show that the average residence time of the water in the epikarst is generally around three months, but it is only 18 days near an infiltration pathway. During the winter season, the residence times are three times shorter in response to the increase in the effective rainfall.  相似文献   

9.
In order to harvest runoff to palliate water disaster as well as effectively manage irrigation and fertilizer application in the studied region, it is necessary to better understand the runoff processes. A newly designed runoff collection system for a plot scale was used to partition runoff under contrasting rainfall events into surface flow and subsurface flow to obtain characteristics of surface runoff and throughflow in a purple soil (Regosols in FAO taxonomy, Entisol in USDA taxonomy) of Sichuan, China. Under small rainfall (shower and drizzle), only surface runoff was observed. It is noted that, under shower, particularly with antecedent dry soil conditions, the highest peak surface runoff significantly lagged behind that of rainfall, because air‐locked soil pores of the top layer appeared temporally. Under rainstorm and downpour, surface runoff and throughflow both commenced and showed hysteresis. The hydrograph of surface runoff better resembled that of rainfall than throughflow did. The durations of throughflow discharge of post‐rainfall‐end were near the same (within 24 h) under various rainfalls and rather dependent upon the soil properties than the rainfall characteristics. Throughflow is about 60–90% of total runoff, and especially significant in a ploughed layer under downpour. The chloride concentration of throughflow was over twice that of surface runoff and rainfall, implying that throughflow contains more nutrients than surface runoff. Presumably, surface runoff was primarily governed by an infiltration‐excess or saturated excess‐infiltration mechanism under unsaturated or saturated soil conditions. Therefore, the management of water and fertilizer, and the harvesting of water flow in the ploughed soil layer, should be emphasized in this region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

11.
A comprehensive understanding of seasonal hydrological dynamics is required to describe the influence of pore‐water pressure on the stability of landslides in snowy regions. This study reports on the results of continuous meteorological and hydrological observations over 2 years on a landslide body comprising Neogene sedimentary rocks in northern Japan, where a thick (3–5 m) seasonal snowpack covers the land surface. Monitoring of the volumetric water content in shallow unsaturated zones (<0.8 m depth) and pore‐water pressure in saturated bedrock at depths of 2.0 and 5.2 m revealed clear seasonality in hydrological responses to rainfall and meltwater supply. During snow‐free periods, both the shallow soil moisture and deep pore‐water pressure responded rapidly to intense rainwater infiltration. In contrast, during snowmelt, the deep pore pressure fluctuated in accordance with the daily cycle of meltwater input, without notable changes in shallow moisture conditions. During occasional foehn events that cause intense snow melting in midwinter, meltwater flows preferentially through the layered snowpack, converging to produce a localized water supply at the ground surface. This episodically triggers a significant rise in pore‐water pressure. The seasonal differences in hydrological responses were characterized by a set of newly proposed indices for the magnitude and quickness of increases in the pressure head near the sliding surface. Under snow‐covered conditions, the magnitude of the pressure increase tends to be suppressed, probably owing to a reduction in infiltration caused by a seasonal decrease in the permeability of surface soils, and effective pore‐water drainage through the highly conductive colluvial layer. Deep groundwater flow within bedrock remained in a steady upwelling state, enhanced by increasing moisture in shallow soils under snow cover, reflecting the convergence of subsurface water from surrounding hillslopes.  相似文献   

12.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

13.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

14.
Changes in hydrologic flowpaths have important impacts on the timing, magnitude and hydrochemistry of run‐off during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later because of climate change. In this study, we used end‐member mixing analysis to determine daily contributions of snow, forest floor soil water and groundwater to stream run‐off during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of run‐off through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared with the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow‐precipitation end‐member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Solute transport in overland flow is considered as one of the main contributors to water pollution. Although many models of pollutant transport mechanism from soil to run‐off water have been proposed, the characteristics of solute transport accompanying the water run‐off over vegetated surface have not been well studied. In this study, a series of laboratory experiments were conducted to study the solute transport over vegetated surfaces. Based on the experimental results, an idea of the “stationary water layer” in run‐off was proposed. Applying the complete mixing theory in the stationary water layer, an analytical solute transport model was developed with the assumption that the upper run‐off completely mixes with the underlying water in the stationary water layer for each site. The results show that the predictions made by the present model are in good agreement with the measured experimental data. For the vegetated surfaces, the depth of stationary water layer is related to the rainfall intensity, bed slope, and vegetation density. The analytical solution shows that the maximum solute transport occurs at the time of concentration. This study advances our understanding of the mechanisms of solute transport over vegetated areas.  相似文献   

16.
The understanding of the hydrology of plain basins may be improved by the combined analysis of rainfall–run‐off records and remote sensed surface moisture data. Our work evaluates the surface moisture area (SMA) produced during rainfall–run‐off events in a plain watershed of the Argentine Pampas Region, and studies which hydrological variables are related to the generated SMA. The study area is located in the upper and middle basins of the Del Azul stream, characterized by the presence of small gently hilly areas surrounded by flat landscapes. Data from 9 rainfall–run‐off events were analysed. MODIS surface reflectance data were processed to calculate SMA subsequent to the peak discharge (post‐SMA), and previous to the rainfall events (prev‐SMA), to consider the antecedent wetness. Rainfall–run‐off data included total precipitation depth (P), maximum intensity of rainfall over 6 hr (I6max), surface run‐off registered between the beginning of the event and the day previous to the analysed MODIS scene (R), peak flow (Qp), and flood intensity (IF). In contrast with other works, post‐SMA showed a negative relationship with the R. Three groups of cases were identified: (a) Events of low I6max, high prev‐SMA, and low R were associated with slow and weakly channelized flow over plain areas, leading to saturated overland flow (SOF), with large SMA; (b) events of high I6max, low prev‐SMA, and medium to high R were rapidly transported along the gentle slopes of the basin, related to Hortonian overland flow (HOF) and low post‐SMA; and (c) events of medium to high I6max and prev‐SMA with medium R were related to heterogeneous input‐antecedent‐run‐off conditions combined: Local spatial conditions may have produced HOF or SOF, leading to an averaged response with medium SMA. The interactions between the geomorphology of the basin, the characteristics of the events, and the antecedent conditions may explain the obtained results. This analysis is relevant for the general knowledge of the hydrology of large plains, whose functioning studies are still in their early stages.  相似文献   

17.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

19.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号