首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies have focused on the amount of stemflow in different forests and for different rainfall events, but few studies have focused on how stemflow intensity varies during events or the infiltration of stemflow into the soil. Stemflow may lead to higher water delivery rates at the base of the tree compared with throughfall over the same area and fast and deeper infiltration of this water along roots and other preferential flow pathways. In this study, stemflow amounts and intensities were measured and blue dye experiments were conducted in a mature coniferous forest in coastal British Columbia to examine double funnelling of stemflow. Stemflow accounted for only 1% of precipitation and increased linearly with event total precipitation. Funnelling ratios ranged from less than 1 to almost 20; smaller trees had larger funnelling ratios. Stemflow intensity generally was highest for periods with high‐intensity rainfall later in the event. The maximum stemflow intensities were higher than the maximum precipitation intensities. Dye tracer experiments showed that stemflow infiltrated primarily along roots and was found more frequently at depth than near the soil surface. Lateral flow of stemflow was observed above a dense clay layer for both the throughfall and stemflow experiments. Stemflow appeared to infiltrate deeper (122 cm) than throughfall (85 cm), but this difference was in part a result of site‐specific differences in maximum soil depth. However, the observed high stemflow intensities combined with preferential flow of stemflow may lead to enhanced subsurface stormflow. This suggests that even though stemflow is only a very minor component of the water balance, it may still significantly affect soil moisture, recharge, and runoff generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Tropical rainforest canopy trees that have large projected areas of upwardly inclined branches are capable of funnelling large volumes of rainwater down their trunks. During periods of prolonged heavy rainfall on Mount Bellenden Ker in northeast Queensland, Australia, stemflow volumes were found to be as much as two orders of magnitude greater than the volume of incident rainfall expected in a rain gauge occupying an area equal to the trunk basal area. Stemflow totals ranging from 6000 to 70000 litres were generated by individual trees from 7800 mm of rainfall over two successive wet seasons. The combination of high intensity rainfall and the funnelling effect results in significant quantities of infiltration-excess at the ground surface. Stemflow fluxes as high as 31.4 cm3 min?1 per cm2 of basal area (i.e. the equivalent of 314 mm min?1) were recorded when rainfall intensity was only 2 mm min?1. The mean infiltration capacity of the topsoil was determined to be 6.2 mm min?1. The areas over which the stemflow would have had to spread in order to infiltrate were computed to be as much as 3 m2 around the bases of individual canopy trees. Approximations of the distances that the infiltration-excess would have travelled away from the tree bases were calculated by assuming that the infiltration area either expands radially outward in the form of an annulus or extends straight downslope from the tree base.  相似文献   

3.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The rainfall received by a small plot of tropical deciduous forest on sand dunes in Veracruz, Mexico, was partitioned into stemflow and throughfall components to determine whether funnelling by stemflow could reduce soil leaching by transmitting large volumes of water through vertical soil pathways beneath each stem. Although soil infiltration capacities were high, only a very small proportion of incoming rainfall was funnelled by canopy stems. This is attributed to the widely-branched morphology of mature trees. Smaller trees and shrubs were more effective funnellers of rainfall, and a crude estimate of the magnitude of stemflow in the understorey stratum in one rain event suggested a contribution approximately ten times that of canopy stemflow. However, even if augmented by the understorey stratum in this way, total stemflow is unlikely to have exceeded 10 per cent of gross precipitation, implying that it does not represent an important leaching-avoidance mechanism in this forest.  相似文献   

7.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   

9.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

10.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

13.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An increasing number of studies have examined the effects of various biotic and abiotic factors on stemflow production. Of those that have ascribed the importance of canopy structure to stemflow production, there has been a bias towards field studies. Coupling Bayesian inference with the NIED (National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan) large-scale rainfall simulator, this study leveraged a unique opportunity to control rainfall amounts and intensities to pinpoint the canopy structural metrics that differentially influence stemflow funnelling ratios for three common tree species between leafed and leafless canopy states. For the first time, we examined whether canopy structure metrics exert a static control on stemflow funnelling ratios or whether different elements of canopy structure are more or less important under leafed or leafless states, thereby allowing us to determine if tacit assumptions about the static influence of canopy structure on stemflow production (and funnelling) are valid (or not). Rainfall simulations were conducted at 15, 20, 30, 40, 50, and 100 mm h−1 under both leafed and leafless tree conditions (12 simulations in total) to detect any differential effects on the presence or absence of foliage on stemflow funnelling ratios. For leafed conditions, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that stemflow funnelling ratios were mainly controlled by total dry aboveground biomass (Ball), diameter at breast height (DBH), total dry foliar biomass (Bf), tree height (H), and woody to foliar dry biomass ratio (BR). Whilst for the leafless state, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that total dry branch biomass (Bbr) was relatively dominant as was the interaction effects between crown projection area and species (CPA:species). These results compel us to reject any assumption of a static effect of different elements of canopy structure on stemflow funnelling.  相似文献   

15.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

17.
Large‐scale exotic pine plantations have been developed for timber production in subtropical Australia. Few studies investigate the spatial variability of both throughfall and stemflow in such managed pine plantations despite their acknowledged effects on the heterogeneity of hydrological and biochemical processes of forested ecosystems. To examine the spatial variability of rainfall under a 12‐year‐old pine plantation in a subtropical coastal area of Australia, we observed gross rainfall, throughfall and stemflow over a 1‐year period. Our results show that the spatial variability of gross rainfall within a 50 m × 50 m plot is minimal. Throughfall is significantly different among three tree zones (midway between rows, west and east side of trunks), particularly for rainfall <50 mm, with the highest throughfall on the east side of the tree trunks (sum = 85% of gross rainfall) and the lowest in the midway between tree rows (sum = 68% of gross rainfall). These spatial patterns persist among 84% of recorded rainfall events. Spatial variability and time stability of throughfall are better explained by canopy interception of the inclined rainfall resulting from the prevailing easterly wind direction throughout the experiment. The annual stemflow is different among individual sample trees, which is mainly ascribed to the difference in tree size (e.g. projected canopy area and stem diameter). The outcomes of this study would help future investigators better design appropriate sampling strategies in these pine plantations under similar climate conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10‐s resolution. Fractions of different throughfall categories were analysed for single‐precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high‐DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small‐scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high‐resolution spatial and temporal properties of rainfall and throughfall.  相似文献   

19.
In this article the effect of redistribution of rainfall by banana on local water fluxes and the possible impact of these fluxes on surface runoff has been studied. First the water redistribution by a banana canopy at three development stages (vegetative, flowering, and bunch stage) was measured. The results showed a considerable stemflow, proportional to the leaf area index (LAI), which represented 18 to 26% of the incident rainfall volume according to the age of the crop. Consequently, the rainfall rate was 28‐fold higher at the plant collar for a fully developed banana canopy. For the throughfall, on average, the higher the LAI, the lower the mean throughfall. In addition, the spatial distribution of the throughfall varied according to the distance from the pseudostem. Notably, for the earlier stages, the area between the pseudostem and 0·5 m from it received weak throughfall. Secondly, simulations were carried out with a simple two‐compartment model simulating the total surface runoff volume. The simulations showed stemflow combined with the agronomical practice of furrowing has an effect on runoff compared to bare soil. A relative increase in surface runoff volume of three‐fold was encountered on a plot with a fully developed banana and a infiltration rate of 60 mm h?1. However, the absolute increase was only a few percentage of the incident rainfall volume, although it represented large water volumes given the tropical rains. These features must be taken into account for hydrological management of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Stemflow of xerophytic shrubs was monitored on event basis within a revegetated sand dune. Quantity of stemflow showed a clear species‐specific dependence in combination with the rainfall characteristics. Results obtained revealed that for ovate‐leaved C. korshinskii with an inverted cone‐shaped canopy and smooth bark, the quantity of stemflow in depth accounted for 7.2% of the individual gross rainfall, while it was 2.0% for needle‐leaved A. ordosica with a cone‐shaped canopy and coarse bark. There were significant positive linear relationships between stemflow and individual gross rainfall and rainfall intensity for the two shrubs. An individual gross rainfall of 1.4 and 1.8 mm was necessary for stemflow generation for C. korshinskii and A. ordosica, respectively. Multiple regression analysis showed that the abiotic and biotic variables including the individual gross rainfall, mean windspeed (WS), canopy height, branch length, and canopy volume have significant influence on stemflow for C. korshinskii, whereas for A. ordosica, the notable influencing variables were individual gross rainfall, stem diameter, and leaf area index. Generally, WS has less effect on stemflow than that of rainfall for A. ordosica. The correlation relationship between individual gross rainfall and funneling ratio showed that the funneling ratio attains its peak when the gross rainfall is 13 and 16 mm for C. korshinskii and A. ordosica, respectively, implying that the canopy morphology emerged as determining factors on funneling ratio decrease when the individual gross rainfall exceeds these values. In comparison, higher WS increased the funneling ratio remarkably for C. korshinskii than A. ordosica due partly to the greater branch length and canopy projection area in C. korshinskii. Funneling ratio can be used as an integrated variable for the effects of canopy morphology and rainfall characteristics on stemflow. The implication of stemflow on water balance and its contribution to sustain the shrubs and the revegetation efforts was discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号