首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into run‐off has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, catchments underlain by permafrost have received little attention in isotope‐based studies, despite their global importance in terms of rapid environmental change. These high‐latitude regions offer limited access for data collection during critical periods (e.g., early phases of snowmelt). Additionally, spatio‐temporal variable freeze–thaw cycles, together with the development of an active layer, have a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. We describe an isotope‐based study undertaken to provide a preliminary assessment of travel times at Siksik Creek in the western Canadian Arctic. We adopted a model–data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using samples collected in the spring/summer, we characterize the isotopic composition of summer rainfall, melt from snow, soil water, and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were monitored. First approximations of transit times were estimated for soil and streamwater compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs revealed that transit time was best estimated using all available inflows (i.e., snowmelt, soil ice thaw, and rainfall). Early spring transit times were short, dominated by snowmelt and soil ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer resulted in more damped steam water variation and longer mean travel times (~1.5 years). The study has also highlighted key data needs to better constrain travel time estimates in permafrost catchments.  相似文献   

2.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

3.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

4.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Changes in hydrologic flowpaths have important impacts on the timing, magnitude and hydrochemistry of run‐off during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later because of climate change. In this study, we used end‐member mixing analysis to determine daily contributions of snow, forest floor soil water and groundwater to stream run‐off during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of run‐off through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared with the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow‐precipitation end‐member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

7.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

9.
The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

12.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A physically based SVAT‐model was tested with soil and snow physical measurements, as well as runoff data from an 8600 m2 catchment in northern Sweden in order to quantify the influence of soil frost on spring snowmelt runoff in a moderately sloped, boreal forest. The model was run as an array of connected profiles cascading to the brook. For three winter seasons (1995–98) it was able to predict the onset and total accumulation of the runoff with satisfactory accuracy. Surface runoff was identified as only a minor fraction of the total runoff occurring during short periods in connection with ice blocking of the water‐conducting pores. Little surface runoff, though, does not mean that soil frost is unimportant for spring runoff. Simulations without frost routines systematically underestimated the total accumulated runoff. The possibility of major frost effects appearing in response to specific combinations of weather conditions were also tested. Different scenarios of critical initial conditions for the winter, e.g. high water saturation and delayed snow accumulation leading to an increased frost penetration, were tested. These showed that under special circumstances there is potential for increased spring runoff due to soil frost. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Snowmelt water is an important freshwater resource in the Altay Mountains in north‐west China; however, warming climate and rapid spring snowmelt can cause floods that endanger both public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature index model based on remote sensing coupled with high‐resolution meteorological data obtained from National Centers for Environmental Prediction (NCEP) reanalysis fields that were downscaled using the Weather Research Forecasting model and then bias corrected using a statistical downscaled model. Validation of the forcing data revealed that the high‐resolution meteorological fields derived from the downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of the temperature index model based on remote sensing were calibrated for spring 2014, and model performance was validated using Moderate Resolution Imaging Spectroradiometer snow cover and snow observations from spring 2012. The results show that the temperature index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash–Sutcliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt run‐off was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt run‐off accounts for 72% of spring run‐off and 21% of annual run‐off. Snowmelt is the main source of run‐off for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt run‐off predictions, so as to prevent snowmelt‐induced floods, and also provide a generalizable approach that can be applied to other remote locations where high‐density, long‐term observational data are lacking. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Seasonal low flows are important for sustaining ecosystems and for supplying human needs during the dry season. In California's Sierra Nevada mountains, low flows are primarily sustained by groundwater that is recharged during snowmelt. As the climate warms over the next century, the volume of the annual Sierra Nevada snowpack is expected to decrease by ~40–90%. In eight snow‐dominated catchments in the Sierra Nevada, we analysed records of snow water equivalent (SWE) and unimpaired streamflow records spanning 10–33 years. Linear extrapolations of historical SWE/streamflow relationships suggest that annual minimum flows in some catchments could decrease to zero if peak SWE is reduced to roughly half of its historical average. For every 10% decrease in peak SWE, annual minimum flows decrease 9–22% and occur 3–7 days earlier in the year. In two of the study catchments, Sagehen and Pitman Creeks, seasonal low flows are significantly correlated with the previous year's snowpack as well as the current year's snowpack. We explore how future warming could affect the relationship between winter snowpacks and summer low flows, using a distributed hydrologic model Regional Hydro‐ecologic Ecosystem Simulation System (RHESSys) to simulate the response of two study catchments. Model results suggest that a 10% decrease in peak SWE will lead to a 1–8% decrease in low flows. The modelled streams do not dry up completely, because the effects of reduced SWE are partly offset by increased fall or winter net gains in storage, and by shifts in the timing of peak evapotranspiration. We consider how groundwater storage, snowmelt and evapotranspiration rates, and precipitation phase (snow vs rain) influence catchment response to warming. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water paths from snowmelt to the arrival of the water in the streams are still largely unknown. This work analyzes for first time the influence of snowmelt on spring streamflow with different snow accumulation and duration, in an alpine catchment of the central Spanish Pyrenees. This study presents the water balance of the main melting months (May and June). Piezometric values, water temperature, electrical conductivity and isotope data (δ18O) allow a better understanding of the hydrological functioning of the basin during these months. Results of the water balance calculations showed that snow represented on average 73% of the water available for streamflow in May and June while precipitation during these months accounted for only 27%. However, rainfall during the melting period was important to determine the shape of the spring hydrographs. On average, 78% of the sum of both the snow water equivalent (SWE) accumulated at the beginning of May and the precipitation in May and June converted into runoff during the May–June melting period. The average evaporation-sublimation during the 2 months corresponded to 8.4% of the accumulated SWE and rainfall, so that only a small part of the water input was ultimately available for soil and groundwater storage. When snow cover disappeared from the catchment, soil water storage and streamflow showed a sharp decline. Consequently, streamflow electrical conductivity, temperature and δ18O showed a marked tipping point towards higher values. The fast hydrological response of the catchment to snow and meteorological fluctuations, as well as the marked diel fluctuations of streamflow δ18O during the melting period, strongly suggests short meltwater transit times. As a consequence of this hydrological behaviour, independently of the amount of snow accumulated and of melting date, summer streamflow remained always low, with only small runoff peaks driven by rainfall events.  相似文献   

17.
In hydrology, the storage‐discharge relationship is a fundamental catchment property. Understanding what controls this relationship is at the core of catchment science. To date, there are no direct methods to measure water storage at catchment scales (101–103 km2). In this study, we use direct measurements of terrestrial water storage dynamics by means of superconducting gravimetry in a small headwater catchment of the Regen River, Germany, to derive empirical storage‐discharge relationships in nested catchments of increasing scale. Our results show that the local storage measurements are strongly related to streamflow dynamics at larger scales (> 100 km2; correlation coefficient = 0.78–0.81), but at small scale, no such relationship exists (~ 1 km2; correlation coefficients = ?0.11). The geologic setting in the region can explain both the disconnection between local water storage and headwater runoff, and the connectivity between headwater storage and streams draining larger catchment areas. More research is required to understand what controls the form of the observed storage‐discharge relationships at the catchment scale. This study demonstrates that high‐precision gravimetry can provide new insights into the complex relationship between state and response of hydrological systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

19.
Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from <20 km2 to more than 1000 km2. The forest hydrology model ForHyM2 was used to simulate monthly rates of stream discharge, throughfall and snowpack water equivalents for mature forest conditions. These simulations were in good agreement with the historical records once the contributions of fog and mist to the area‐wide water budget were taken into account, each on a monthly basis. The resulting simulations establish a hydrologically consistent, continuous, comprehensive and partially verified record for basin‐wide outcomes for all major hydrological processes and conditions, be these related to stream discharge, soil moisture, soil temperature, snowpack accumulations, soil frost, throughfall, interception and soil percolation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The formation of baseflow and stormflow was examined in the 1.18 km2 part of the headwater catchment Uhlí?ská, Jizera Mountains, Czech Republic, over the period 2007–2011, by means of run‐off data and environmental tracers 18O and SiO2. The baseflow, computed using the digital filter approach BFLOW, contributes 67% to total streamflow and has a mean residence time of 12.3 months. It is formed by groundwater discharge from the valley deluviofluvial granitic sediments, in combination with soil water in weathered layers on hillslopes during rainfall and snowmelt periods. The prevailing source of the groundwater is the infiltration of snowmelt water. Analysis of 20 run‐off events and their hysteretic patterns demonstrated that the stormflow water has a residence time of about 4 months and is generated by preferential flow on hillslopes combined by soil matrix drainage. Because of slower flow in the soil matrix, the enrichment of pore water in SiO2 is more pronounced. The stormflow and snowmelt water flowing via preferential pathways of upslope minerals soils pushes the pre‐event groundwater through the pathways in wetlands to the stream, and the wetland can be therefore considered as groundwater supplied. This mechanism has been found to be typical for the groundwater‐supplied headwater catchments of the Jizera Mountains and can be also assumed in other mountainous headwaters of the granitic massif in Central Europe. The main methodological contribution of this study are the residence time calculations stratified by baseflow and event flow, identifying run‐off components of different travel times to streams and linking them with geochemical run‐off sources. This achievement was possible because of a comprehensive dataset on hydrology, stable isotopes and silica hydrochemistry in all relevant run‐off generation components. This concept indicates that a possible long‐term change in snowmelt may affect the run‐off regime of headwater catchments to climate or land‐use changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号