首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To improve quantitative understanding of mixed‐land‐use impacts on nutrient yields, a nested‐scale experimental watershed study design (n = 5) was applied in a 303(d), clean water act impaired urbanizing watershed of the lower Missouri River Basin, USA. From 2010 to 2013, water samples (n = 858 sample days per site) were analysed for total inorganic nitrogen (TIN‐N), nitrite (NO2–N) nitrate (NO3–N), ammonia (NH3–N), and total phosphorus (TP‐P). Annual, seasonal, and monthly flow‐weighted concentrations (FWCs) and nutrient yields were estimated. Mean nutrient concentrations were highest where agricultural land use comprised 58% of the drainage area (NH3 = 0.111 mg/l; NO2 = 0.045 mg/l; NO3 = 0.684 mg/l, TIN = 0.840 mg/l; TP = 0.127 mg/l). Average TP‐P increased by 15% with 20% increased urban land use area. Highly variable annual precipitation was observed during the study with highest nutrient yields during 2010 (record setting wet year) and lowest nutrient yields during 2012 (extreme drought year). Annual TIN‐N and TP‐P yields exceeded 10.3 and 2.04 kg ha?1 yr?1 from the agricultural dominated headwaters. Mean annual NH3–N, NO2–N, NO3–N, TIN‐N, and TP‐P yields were 0.742, 0.400, 4.24, 5.38, and 0.979 kg ha?1 yr?1, respectively near the watershed outlet. Precipitation accounted for the majority of the explained variance in nutrient yields (R2 values from 0.68 to 0.85). Nutrient yields were also dependent on annual precipitation of the preceding year (R2 values from 0.87 to 0.91) thus enforcing the great complexity of variable mixed‐land‐use mediated source‐sink nutrient yield relationships. Study results better inform land managers and best management practices designed to mitigate nutrient pollution issues in mixed‐land‐use freshwater ecosystems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Understanding the influence of storm events on nitrate (NO3?) dynamics is important for efficiently managing NO3? pollution. In this study, five sites representing a downstream progression of forested uplands underlain by resistant sandstone to karst lowlands with agricultural, urban and mixed land‐use were established in Spring Creek, a 201 km2 mixed land‐use watershed in central Pennsylvania, USA. At each site, stream water was monitored during six storm events in 2005 to assess changes in stable isotopes of NO3?15N‐NO3? and δ18O‐NO3?) and water (δ18O‐H2O) from baseflow to peakflow. Peakflow fractions of event NO3? and event water were then computed using two‐component mixing models to elucidate NO3? flow pathway differences among the five sites. For the forested upland site, storm size appeared to affect NO3? sources and flow pathways. During small storms (<35 mm rainfall), greater event NO3? fractions than event water fractions indicated the prevalence of atmospheric NO3? source contributions at peakflow. During larger storms (>35 mm rainfall), event NO3? fractions were less than event water fractions at peakflow suggesting that NO3? was flushed from stored sources via shallow subsurface flow pathways. For the urbanized site, wash‐off of atmospheric NO3? was an important NO3? source at peakflow, especially during short‐duration storms where event water contributions indicated the prevalence of overland flow. In the karst lowlands, very low fractions of event water and even lower fractions of event NO3? at peakflow suggested the dominance of ground water flow pathways during storms. These ground water flow pathways likely flushed stored NO3? sources into the stream, while deep soils in the karst lowlands also may have promoted NO3? assimilation. The results of this study illustrated how NO3? isotopes and δ18O‐H2O could be combined to show key differences in water and NO3? delivery between forested uplands, karst valleys and fully urbanized watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The relationship between solute concentrations and discharge can inform an integrated understanding of hydrological and biogeochemical processes at watershed scales. Recent work from multiple catchments has shown that there is typically little variation in concentration relative to large variations in discharge. This pattern has been described as chemostatic behavior. Pond Branch, a forested headwater catchment in Maryland, has been monitored for stream nitrate (NO3?) concentrations at weekly intervals for 14 years. In the growing season and autumn of 2011 a high‐frequency optical NO3? sensor was used to supplement the long‐term weekly data. In this watershed, long‐term weekly data show that NO3? concentrations decrease with increasing discharge whereas 6 months of 15‐minute sensor observed concentrations reveal a more chemostatic behavior. High‐frequency NO3? concentrations from the sensor collected during different storm events reveal variable concentration–discharge patterns highlighting the importance of high resolution data and ecohydrological drivers in controlling solute export for biologically reactive solutes such as NO3?.  相似文献   

6.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

10.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

14.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans‐Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3? concentrations. Median increases in groundwater NO3? (by 0.7–0.9 mg‐N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans‐Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human‐influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3? to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3? (122–910 kg‐N/ha) was sufficient to cause the observed groundwater NO3? increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3? trends can be explained by small volumes of high NO3? modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long‐term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.  相似文献   

16.
Acid‐neutralizing capacity (ANC) is an important index for streamwater acidification caused by external factors (i.e. chronic acid deposition) and internal factors such as soil acidification due to nitrification. In this study, the influence of forest clear‐cutting and subsequent regrowth on internal acidification was investigated in central Japan, where stream pH (near 7·0) and ANC (above 0·1 meq L?1) are high. pH, the concentrations of major cations (Na+, K+, Mg2+ and Ca2+), major anions (NO3?, Cl? and SO42?) and dissolved silica (Si), and ANC were measured in 33 watersheds of various stand ages, during 2002 to 2004. Only NO3? concentration decreased with stand age, whereas pH, ANC, and concentrations of the sum of base cations (BC) and Si were negatively correlated with the minimum elevation of the watershed. The correlation between the BC/Si ratio and minimum elevation suggested that factors contributing to acid neutralization changed at 1100 m above sea level. In watersheds at lower elevations (?1100 m), the relatively high contribution of soil water with longer soil contact times should result in higher ANC, and cation exchange reactions should be the dominant process for acid neutralization due to deposition of colluvial soils on the lower slope. In contrast, in higher‐elevation watersheds (≥1100 m), weathered residual soils are thin and the small contribution of deeper groundwater results in lower ANC. These results suggest that the local acid sensitivity is determined by the hydrological and geomorphologic factors generated by steep topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Little research has examined whether forests reduce stream water eutrophication in agricultural areas during spring snowmelt periods. This study evaluated the role of forests in ameliorating deteriorated stream water quality in agricultural areas, including pasture, during snowmelt periods. Temporal variation in stream water quality at a mixed land‐use basin (565 ha: pasture 13%, forestry 87%), northern Japan, was monitored for 7 years. Synoptic stream water sampling was also conducted at 16 sites across a wide range of forest and agricultural areas in a basin (18.3 km2) in spring, summer and fall. Atmospheric nitrogen (N) and phosphorus (P) deposition were measured for 4 years. The results showed that concentration pulses of nitrate, organic N and total P in stream water were observed when discharge increased during spring snowmelt. Their concentrations were high when silicate concentrations were low, suggesting surface water exported from pasture largely contributed to stream water pollution during snowmelt. Atmospheric N and P deposition (4.1 kg N ha?1 y?1; 0.09 kg P ha?1 y?1, respectively) was too low to affect the background concentrations of N and P in streams from forested areas. Reduction of eutrophication caused by nutrients from pasture was mainly due to dilution by water containing low concentrations of N and P exported from forested areas, whereas in‐stream reduction was not a dominant process. Results indicate that forests have a limited capacity to reduce the concentration pulses of N and P in stream water during snowmelt in this study basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Changes in the physical structure of urban streams can occur abruptly due to flashy high‐flow events and subsequently alter stream processes, including transient storage and nitrate uptake. We examined temporal variability in transient storage and nitrate uptake by exploring the effects of altered physical characteristics resulting from a single high‐flow event in three reaches of Spring Creek, an urban stream in Fort Collins, Colorado, USA. Study reaches of varying geomorphic and hydraulic characteristics were chosen to represent distinct geomorphic settings in terms of substrate size, sinuosity, bed slope, and degree of rehabilitation and structural controls. We performed detailed physical characterizations and multiple nutrient injections of Br? and NO3? to estimate transient storage and nitrate uptake in each reach. A comparison of pre‐flood and post‐flood data indicates that transient storage and nitrate uptake are highly context specific and mediated by interactions between geomorphic setting and flood discharge. In the two reaches that showed significant post‐flood increases in transient storage (250% to 350% increases in Fmed200), the pool‐riffle reach exhibited a significant increase in uptake velocity, while the channelized reach did not. In contrast, transient storage decreased post‐flood in the third reach containing hydraulic structures. These complex responses likely reflect reach‐specific differences in hyporheic versus in‐channel storage. This study shows that repeat injections are necessary to describe nutrient dynamics because transient storage and nitrate uptake can be highly variable over time (showing changes on the order of 100%) due to variation in discharge and geomorphically influential flow events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Baseflow has become an important source of nitrate nonpoint source pollution in many intensive agricultural watersheds. Uncertainties in baseflow nutrient load separation are caused by the effects of hydrometeorological factors on both baseflow recession and baseflow nutrient load recession. These uncertainties have not been addressed well in the existing separating algorithms, which are based on simple baseflow rate–load relationships. In the present study, a recursive tracing source algorithm (RTSA) was developed based on a nonlinear reservoir algorithm and hydrometeorology-corrected baseflow nutrient load recession parameter. This approach was used to reduce the uncertainty of baseflow nitrate load estimation caused by variations in different load recessions under varying climate conditions. RTSA validation in a typical rainy agricultural watershed yielded Nash–Sutcliffe efficiency, root mean square error-observation standard deviation ratio, and R2 values of 0.91, 0.30, and 0.91, respectively. The baseflow nitrate–nitrogen (N─NO3) loads from 2003 to 2012 in the Changle River watershed of eastern China were estimated with the RTSA. The results indicated that baseflow nitrate export accounted for 62.0% of the mean total annual N─NO3 loads (18.0 kg/ha). The total baseflow N─NO3 export was highest in spring (3.6 kg/ha), followed by summer (3.2 kg/ha), winter (2.3 kg/ha), and autumn (2.1 kg/ha). The contribution of baseflow to total nitrate in the stream decreased in the order of winter (69.88%) >spring (66.59%) >autumn (60.36%) >summer (54.04%). The monthly baseflow N─NO3 loads and flow-weighted concentrations greatly increased during the research period (Mann–Kendall test, Zs > 2.56, p < .01). Without proper countermeasures, baseflow nitrate may represent a serious long-term risk for water surfaces in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号