首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Spectral observations of Ap-CP stars with the BTA (Special Astronomical Observatory, Russian Academy of Sciences) using the NES echelle spectrometer have revealed several stars with an anomalous lithium abundance. The oscillating star HD 12098, which is the first roAp star in the northern hemisphere of the sky, merits special attention. Strong, variable LiI 6708 Å line was observed in the spectrum of this star. There are not enough observations for a reliable analysis by Doppler mapping, but there are enough to indicate the presence of lithium spots on the surface of this star similar to the roAp stars HD 83368 and HD 60435, on whose surfaces spots with a high lithium abundance have been reliably detected. Parameters for a model of its atmosphere have been chosen using the method of synthetic spectra based on atmospheric models including lines from the VALD list and several additional blended REE lines calculated by the authors. The profile of the lithium LiI 6708 Å blend has been calculated taking the magnetic field into account using the SYNTHM code. A lithium abundance has been determined for two phases of the rotation of HD 12098 that is anomalously high compared to the solar and meteoritic abundances. The large difference in the lithium abundance in the two phases (in two different regions on the star's surface) exceeds 0.5 dex and is very close to that which we have found by analyzing the spectra of the roAp stars HD 83368 and HD 60435. Thus, we have discovered yet another roAp star, HD 12098, with lithium spots on its surface. Translated from Astrofizika, Vol. 51, No. 4, pp. 607–616 (November 2008).  相似文献   

3.
New spectral observations of chemically peculiar (CP) magnetic stars were obtained using an NES echelle spectrometer with a BTA telescope in the Special Astrophysical Observatory (Russian Academy of Sciences). Several stars were shown to have anomalous Li abundances. Testing and monitoring the stars with Doppler shifts Vsini > 10 km/s indicated that the lithium 6708 Å line was variable in the spectra of some roaAP-CP stars. To distinguish variable features in the spectra, the dispersogram technique was used. The most peculiar among the stars studied is HD 12098. The strong and variable lithium 6708 Å line was detected in the spectrum of this star. The star has been shown to have greatly different lithium abundances in two rotation phases corresponding to opposite surface areas. As mentioned earlier, a similar behavior of the Li blend was found in the spectra of HD 83368 and HD 60435 which have lithium spots on their surface. Spectral observations of slowly rotating CP stars with the Doppler shifts Vsini < 10 km/s revealed the strong and nonvariable lithium 6708 Å line in the spectra of these stars. Quantitative spectral analysis using the Li I 6708 Å resonance doublet and the Li I 6103 Å line shows the lithium abundance, as determined by the 6103 Å line, to be somewhat greater than that determined by the 6708 Å line. A higher ratio of 6Li/7Li amounting to ~0.3–0.5 was found in these stars. 6Li production is assumed to be due to spallation reactions on the surface of magnetic CP stars; this isotope ratio remained in strong magnetic fields.  相似文献   

4.
HD 147010, which is in the reflection nebula vd B 102, has been found to be a hot Ap silicon star rather than a normal A supergiant. From theUBV and JHK photometry of the star, colour excessE(B - V) of 0.29 and the ratio of total-to-selective absorptionR of 4.3 have been obtained. The high value ofR implies bigger grain size and also confirms the association of the star with the nebula. The dereddened colours of the star can be fitted to a theoretical energy distribution with Teff = 13000 ± 500 K and logg = 3.6 ± 0.2. HD 147010 has also been found to be a spectrum variable; in particular, lines of Cr II show large intensity variations.  相似文献   

5.
The problem of lithium in chemically peculiar Ap-CP stars has been the subject of debate for many years. The main reason for this is a lack of spectral observations of Ap stars in the neighborhood of the lithium resonance doublet Li I 6708 Å. An international cooperation project on “Lithium in cool CP stars with magnetic fields” was started in 1996. Systematic observations of CP stars in spectral regions of the 6708 Å and 6103 Å lines at the ZTSh (CrAO), CAT (ESO), Feros (ESO), and the 74″ telescope of the Mount Stromlo Observatory (Australia) have been used to analyze spectra of several CP stars studied by the way the 6708 Å lithium line varies with the stars’ rotational phase. Monitoring of the spectra of the oscillating CP stars (group I) HD 83368, HD 60435, and HD 3980, for which significant Doppler shifts of the Li I 6708 Å line are observed led to the discovery of “lithium spots” on the surface of these stars whose positions are related to the magnetic field structure. Models of the surfaces of these stars with the special program “ROTATE” based on the profiles of the Li I 6708 Å line are used to estimate the size of the spots, their positions on the stars’ surface, and the lithium abundances in these spots. A detailed analysis and modelling of the spectra of slowly rotating oscillating CP stars with strong, invariant lithium 6708 Å emission, including blending with lines of the rare earth elements, reveals an enhanced lithium abundance, with the abundance determined from the lithium 6103 Å line being higher than that determined from the 6708 Å line for all the stars. This may indicate vertical stratification of lithium in the atmospheres of CP stars with an anomalous isotopic composition (6Li/7Li = 0.2–0.5). HD 101065, an ultraslow rotator (vsini ≈ 1.5) visible from the poles and with powerful oscillations which cause pulsating line broadening in its spectrum, is unique among these stars. The amount of lithium in the atmosphere of HD 101065 logN(Li) = 3.1 on a scale of logN(H) = 12.0 and the isotope ratio 6Li/7Li ≈ 0.3. The high estimates of 6Li/7Li may be explained by the production of lithium in spallation reactions and the preservation of surface 6Li and 7Li by strong magnetic fields in the upper layers of the atmosphere near the magnetic poles. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 463–492 (August 2007).  相似文献   

6.
We report the discovery of brightness variability in the IR-excess early F supergiant HD 331319, a candidate post-AGB star. Over three years of systematic U BV observations, the star showed low-amplitude (up to in V) quasi-periodic brightness variations on a time scale of ∼45 days. A preliminary analysis of our photometry indicates that HD 331319 and other typical post-AGBF supergiants have a similar pattern of variability. A study of the extinction toward HD 331319 leads us to conclude that the fraction of the circumstellar extinction is small for this star. We present low-resolution spectroscopy for HD 331319 and discuss the spectral classification of post-AGB F supergiants using HD 331319, HD 161796, HD 187885, and HD 56126 as examples.  相似文献   

7.
Low frequency oscillation, typical for γ Doradus g‐mode type stellar core sensitive pulsation, as well as higher frequency δ Scuti type pulsation typical for p ‐modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with the potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astro‐physical fundamental parameters to locate HD 8801 in the H‐R diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a nonmagnetic metallic line (Am) star, pulsating simultaneously in p‐ and g‐modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75 % of Am stars are located in short‐period binaries, but there is no evidence that HD 8801 has a companion. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report spectral time series of the late O-type runaway supergiant HD 188209. Radial velocity variations of photospheric absorption lines with a possible quasi-period of ∼6.4 d have been detected in high-resolution echelle spectra. Night-to-night variations in the position and strength of the central emission reversal of the H α profile occurring over ill-defined time-scales have been observed. The fundamental parameters of the star are derived using state-of-the-art plane-parallel and unified non-LTE model atmospheres, the latter including the mass-loss rate. The derived helium abundance is moderately enhanced with respect to solar, and the stellar masses are lower than those predicted by the evolutionary models. The binary nature of this star is not suggested either from Hipparcos photometry or from radial velocity curves.  相似文献   

9.
The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V‐parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator L to both sides of this relation. As the operator L, the operator of the wavelet transform with DOG‐wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star α2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared tobe in good agreement with those determined by other methods. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The evolved star HD 179821 continues to be the subject of much debate as to whether it is a nearby     post-asymptotic giant branch (post-AGB) star or a distant     high initial mass     post-red supergiant. We have mapped the OH maser emission around HD 179821 in the 1612- and 1667-MHz lines with the MERLIN interferometer array at a resolution of 0.4 arcsec and 0.35 km s−1. The OH emission lies in a thick shell with inner and outer radii of 1.3 and         and expansion velocity of 30 km s−1. Although we find some evidence for acceleration and for deviations from spherical symmetry, the bulk of the maser emission is consistent with a constant-velocity spherical shell. The extent of the shell agrees with H2O and OH dissociation models and supports a distance estimate of 6 kpc. However, the shell is incomplete and appears to have been disrupted by more recent collimated outflow activity within the last 1500 yr. We suggest that this activity is also responsible for the active envelope chemistry (in particular the presence of HCO+) and for the apparent offset of the star from the centre of the shell. The luminous yellow hypergiant star IRC +10420 also shows signs of recent outflows, and HD 179821 may be at a similar, perhaps slightly earlier, phase of evolution. We suggest that the SiO thermal emission arises from the same detached envelope as the OH maser emission as in IRC +10420. If so then this would strengthen the connection between these two stars and probably rule out a post-AGB status for HD 179821.  相似文献   

11.
We determine lithium abundances in atmospheres of three carbon stars from synthetic spectrum fitting in the λλ 668–674 nm range using the Li I λ 670.8 nm resonance doublet. To produce synthetic spectra, we use a modified list of atomic lines from the VALD database and three alternative line lists of CN and C2 molecules which are modifications of line lists from the Jorgensen’s website () and from the Kurucz database (1993, CD-ROM nos. 1–23). The spectral lines from these lists were tested by matching synthetic spectra to observed spectra of the sun, Arcturus, and early R star HD 100764. We perform analysis of the blends involving the Li I λ 670.8 nm doublet in spectra of N stars AW Cyg and UX Dra. The lithium abundances in HD 100764, AW Cyg, and UX Dra are estimated to be lgN(Li) ≈ 2, −1.4, and −0.9, respectively. Discrepancies of lithium abundances lgN(Li) obtained with the help of molecular line lists do not seem to exceed 0.2 dex.  相似文献   

12.
We examine a binary merger model for the formation of the mysterious triple-ring nebula surrounding Supernova 1987A, which still has not been convincingly explained in detailed hydrodynamical calculations. During the merger of 15 and  5 M  binary systems, mass is ejected primarily at mid-latitudes for a sufficiently evolved primary, as demonstrated by Morris & Podsiadlowski. This material is swept up by the fast wind of the central star during its post-merger blue supergiant phase, leading to a density contrast of ∼150 in the outer rings at the time of the supernova. The equatorial ring probably formed later when the star contracted to become a blue supergiant. The asymmetry between the northern and southern outer rings can be explained by a 10 per cent asymmetry during the merger, perhaps due to a pulsational instability in the common envelope.
We present a parameter study from which we determine a mass-loss rate in the blue supergiant wind in the range  1.5–3 × 10−7 M yr−1  in agreement with previous estimates. The morphology of the best model is consistent with the well-known Hubble Space Telescope image at better than 5 per cent and is also in broad agreement with light-echo observations. The circumstellar environment on larger scales (up to 3 pc) is also investigated. We conclude with a brief discussion of the bipolar nebulae surrounding the Galactic stars, Sheridan 25, HD 168625 and η Carinae.  相似文献   

13.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

14.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula  (12 + log O/H = 8.61 ± 0.13 dex)  is similar to that in the background nebula (8.56 ± 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 ± 0.15, compared to the background value of 7.47 ± 0.18. A new analysis of the stellar spectrum with the fastwind model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around  50 M  , which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.  相似文献   

15.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A close high‐mass binary system consisting of a neutron star (NS) and a massive OB supergiant companion is expected to lead to a Thorne‐Żytkow object (TZO) structure, which consists of a NS core and a stellar envelope. We use the scenario machine program to calculate the formation tracks of TZOs in close high‐mass NS binaries and their subsequent evolution. We propose and demonstrate that the explosion and instant contraction of a TZO structure leave its stellar remnant as a soft gamma‐ray repeater and an anomalous X‐ray pulsar respectively. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We report the detection of the LiI λ6708 resonance line in the K4V secondary of the black-hole binary Nova Muscae 1991. The LiI feature changes with orbital phase, being stronger (EW ∼ 400 mÅ) around φ = 0.0 (observing the dark side of the secondary) and weaker (EW ≤ 190 mÅ) around φ = 0.5 (observing the side facing the compact object). This effect is interpreted as LiI ionization induced by UV/X-ray illumination of the inner hemisphere of the companion star. From the strength of the LiI feature observed around φ = 0.0 we infer a photospheric lithium abundance of logN(Li) ∼ 3. This value should be considered in fact as a lower limit to the true Li abundance because we have not fully corrected for the LiI overionization expected from UV/X-ray illumination.High lithium abundances are becoming a common feature in the secondaries of black hole binaries. After the Li detections in V404 Cyg, A0620-00 and GS2000 + 25, our observations of Nova Muscae not only add a new case to the list, but also demonstrate the impact of irradiation on the formation of the LiI line for the first time. The LiI features observed in the other black hole binaries are probably also affected by irradiation, although not as strongly as in Nova Muscae, and their Li abundances are higher than previously thought.The most attractive scenario for explaining the origin of the high Li abundances in black hole binaries appears to be nucleosynthesis during the explosive accretion events that characterize these objects. We argue that our LiI detection in the secondary of X-ray Nova Muscae 1991, and the transient γ-ray narrow emission feature at 476 keV observed during the 1991 outburst, are both signatures of Li production around the black hole. We propose that the γ-ray emission line was due to 7Be electron capture which yielded excited 7Li atoms. This reaction is able to account for the central energy, narrow width and time scale of the observed γ-ray emission feature. The presence of Li on the surface of the secondary shows that Li atoms created during the outburst can escape and enrich the interstellar medium.Shrinivas Kulkarni  相似文献   

19.
A new sample of 7 stars ranging in metallicity from [Fe/H] = −2.0 to [Fe/H] = −0.75 has been analyzed in the boron spectral region. The targets were selected according to the availability (in the literature) of their lithium and beryllium abundances, because the simultaneous knowledge of LiBeB in the same targets is a powerful diagnostic for testing depletion and internal mixing predicted by different stellar structure models. Two stars (HD 94028 and HD 194598), characterized by similar Li contents, are found to have also similar B abundances, despite a 0.3 dex difference in their Be abundances claimed by Thorburn and Hobbs (1996). Four stars out of 7 are characterized by strongly depleted Li and Be abundances: 2 of them (HD 2665 and HD 3795) are also significantly B-depleted, while two others (HD 106516 and HD 221377) have near normal B abundances despite being depleted by a factor ≥ 10 in both Li and Be abundances. These stars place strong constraints on the nature and depth of the mixing processes responsible for their light element abundances. The 7th star (HD 160617) shows the remarkable aspect of deficient B, probably deficient Be, and completely normal Li. No stellar destruction mechanism can explain this. Rather, chemical inhomogeneities in the halo could be the cause. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
《New Astronomy》2007,12(4):265-270
Surface lithium abundance and rotation velocity can serve as powerful and mutually complementary diagnostics of interior structure of stars. So far, the processes responsible for the lithium depletion during pre-main sequence evolution are still poorly understood. We investigate whether a correlation exists between equivalent widths of Li (EW(Li)) and rotation period (Prot) for weak-line T Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li) and the fast burning of Li begins at the phase when star’s Prot evolves towards 3 days among 0.9M to 1.4M WTTSs in Taurus–Auriga. Our results support the conclusion by Piau and Turch-Chiéze about a model for lithium depletion with age of the star and by Bouvier et al. in relation to rotation evolution. The turn over of the curve for the correlation between EW(Li) and Prot is at the phase of zero-age main sequence (ZAMS). The EW(Li) decreases with decreasing Prot before the star reaches the ZAMS, while it decreases with increasing Prot (decreasing rotation velocity) for young low-mass main sequence stars. This result could be explained as an age effect of Li depletion and the rapid rotation does not inhibit Li destruction among low-mass PMS stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号