首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
泥岩弹塑性损伤本构模型及其参数辨识   总被引:2,自引:1,他引:1  
贾善坡  陈卫忠  于洪丹  李香玲 《岩土力学》2009,30(12):3607-3614
以连续介质力学和不可逆热力学为基础,将损伤引入到修正的Mohr-Coulomb准则中,建立了泥岩弹塑性损伤本构模型反映泥岩软硬化行为,通过构建损伤势函数导出了泥岩的损伤演化方程,编制了泥岩弹塑性损伤本构模型及其参数反演程序。并根据非排水条件下泥岩三轴试验结果,采用多目标函数优化反分析法获得了泥岩本构模型参数。研究成果表明,所提出的弹塑性损伤本构模型能有效地描述泥岩在不同应力状态下的力学特性。  相似文献   

2.
3.
Many clay rocks have distinct bedding planes. Experimental studies have shown that their mechanical properties evolve with the degree of saturation (DOS), often with higher stiffness and strength after drying. For transversely isotropic rocks, the effects of saturation can differ between the bed-normal (BN) and bed-parallel (BP) directions, which gives rise to saturation-dependent stiffness and strength anisotropy. Accurate prediction of the mechanical behavior of clay rocks under partially saturated conditions requires numerical models that can capture the evolving elastic and plastic anisotropy with DOS. In this study, we present an anisotropy framework for coupled solid deformation-fluid flow in unsaturated elastoplastic media. We incorporate saturation-dependent strength anisotropy into an anisotropic modified Cam-Clay (MCC) model and consider the evolving anisotropy in both the elastic and plastic responses. The model was calibrated using experimental data from triaxial tests to demonstrate its capability in capturing strength anisotropy at various levels of saturation. Through numerical simulations, we demonstrate the role of evolving stiffness and strength anisotropy in the mechanical behavior of clay rocks. Plane strain simulations of triaxial compression tests were also conducted to demonstrate the impacts of material anisotropy and DOS on the mechanical and fluid flow responses.  相似文献   

4.
剪胀角是描述岩石体积膨胀扩容的常用参数,在非关联流动法则中,连续介质理论通常假设剪胀角为0;在关联流动法则中,其值恒定且等于内摩擦角。岩石三轴压缩全过程体应变曲线表明,其体积剪胀性依赖于围压和塑性参量,破坏过程中不仅其特征强度随围压和塑性参量呈非线性变化,而且剪胀特性也表现出非线性特征。基于塑性力学理论,针对锦屏大理岩损伤控制的全过程三轴加、卸载试验,采用双参数非线性函数拟合方法建立了能同时考虑围压效应和塑性参量的非线性剪胀角模型。结果表明,对于大理岩、中硬岩,在破坏过程中扩容行为强烈依赖围压和岩石塑性参量,均表现出先快速增加至峰值后,随着塑性变形增加逐渐减小的非线性演化规律。提出的双参数非线性剪胀角模型很好地描述了岩石破坏过程中的体积扩容特性,其结果对于研究地下工程围岩应力变化诱发的围岩剪胀破坏机制、体积扩容膨胀区范围预测和围岩支护的合理设计均具有一定的理论和工程应用价值。  相似文献   

5.
Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic‐plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.  相似文献   

6.
Clayey rocks are frequently chosen as a geological barrier material for underground repositories. The inherent anisotropic mechanical behavior and the evolution of mechanical behavior with water content are two crucial material properties for the safety analysis of these structures. The present paper focuses on numerical modeling of the inherent anisotropy and the effect of water content, as well as the interactions of these properties in partially saturated clayey rocks with preferably oriented bedding planes. A discrete thermodynamic approach is adopted for describing the inherent anisotropic mechanical behavior, and the anisotropy of the elastic parameters, plastic evolution and damage evolution are considered. Capillary pressure is introduced to describe the effect of the water content with the help of the effective stress concept, and a procedure for the identification of the model parameters is presented. Finally, the proposed model is applied to a study of triaxial compression tests of argillite with different orientations of the bedding planes and variable water content. In summary, the main features of the studied material are well reproduced by the model.  相似文献   

7.
范运辉  朱其志  倪涛  张坤  张振南 《岩土力学》2019,40(Z1):181-188
外部荷载作用下的裂隙扩展在空间上一般是非均匀的,引起岩石材料的衍生各向异性。将材料离散成大量随机分布的由力键连结的物质点,基于力键的方向性,且将局部弹性张量离散成一定数量的方向张量,理论推导出力键模量与宏观弹性参数之间的关系。通过考虑力键断裂效应,建立了各向异性弹性损伤本构模型。为了模拟中等孔隙率岩石在常规三轴压缩试验中脆性向延性转变的力学行为,在力键断裂效应中引入损伤抑制函数。通过模拟Tennessee大理岩和Indiana石灰岩的常规三轴实验,并与试验数据对比,验证了模型的合理性和有效性。  相似文献   

8.
9.
A micro-mechanics-based elastic–plastic model is proposed to describe mechanical behaviors of porous rock-like materials. The porous rock is considered as a composite material composed of a solid matrix and spherical pores. The effective elastic properties are determined from the classical Mori–Tanaka linear homogenization scheme. The solid matrix verifies a pressure-dependent Mises–Schleicher-type yield criterion. Based on the analytical macroscopic yield criterion previously determined with a nonlinear homogenization procedure (Shen et al. in Eur J Mech A/Solids 49:531–538, 2015), a complete elastic–plastic model is formulated with the determination of a specific plastic hardening law and plastic potential. The micro-mechanics-based elastic–plastic model is then implemented for a material point in view of simulations of homogeneous laboratory tests. The proposed model is applied to describe mechanical behaviors of two representative porous rocks, sandstone and chalk. Comparisons between numerical results and experimental data are presented for triaxial compression tests with different confining pressures, and they show that the micro-mechanical model is able to capture main features of mechanical behaviors of porous rock-like rocks.  相似文献   

10.
岩盐弹塑性损伤耦合模型研究   总被引:5,自引:1,他引:4  
岩盐力学模型是进行能源岩盐储存工程稳定性分析的基础,而损伤和塑性机制并存且相互耦合是岩盐力学行为的基本特点。采用云应岩盐,进行了多组围压条件下的三轴压缩试验,分析了不同围压下岩盐的变形特征。在试验分析的基础上,提出了一种能够描述岩盐特性的弹塑性损伤耦合的模型,该模型描述了岩盐损伤的演化和塑性变形的耦合关系,并引入了一种非关联的塑性流动法则来描述岩盐从塑性体积压缩到膨胀的转化。采用该模型对在三轴压缩下的岩盐应力-应变关系进行了模拟分析,并与试验数据进行了对比,结果表明该模型能够较好地描述岩盐的主要力学和变形特性。  相似文献   

11.
In this paper, we consider the mechanical response of granular materials and compare the predictions of a hypoplastic model with that of a recently developed dilatant double shearing model which includes the effects of fabric. We implement the constitutive relations of the dilatant double shearing model and the hypoplastic model in the finite element program ABACUS/Explicit and compare their predictions in the triaxial compression and cyclic shear loading tests. Although the origins and the constitutive relations of the double shearing model and the hypoplastic model are quite different, we find that both models are capable of capturing typical behaviours of granular materials. This is significant because while hypoplasticity is phenomenological in nature, the double shearing model is based on a kinematic hypothesis and microstructural considerations, and can easily be calibrated through standard tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The constitutive model of sands is proposed to describe the characteristics of plastic behaviour for cyclic loadings. A non-associated flow rule is used and both yield function and plastic potential are generalized forms of the Modified Cam clay model. The hardening parameter is represented by the plastic work related to different portions of volumetric and deviatoric changes. The boundary surface is employed to describe the plastic strain within the yield surface. The directional independency of yield condition in triaxial compression and extension tests is extended to that in general stress states. Several drained and undrained cyclic tests are predicted and the comparison is made with experimental results. The proposed model is capable of representing the monotonic and cyclic behaviours of sands with reasonable accuracy. The simulation is performed for both included and excluded membrane penetration effects and it is suggested that the membrane penetration causes the significant influences on the results of undrained cyclic tests.  相似文献   

13.
Failure and long‐term behaviour of oriented solids are studied. Transversely isotropic materials are considered and a mathematical formulation that respect the material symmetry is developed and applied to model the triaxial behaviour of sedimentary rocks. Two failure criteria and a viscoplastic constitutive model that describe, respectively, triaxial failure and triaxial creep tests are presented and discussed. The application of the developed models to describe the mechanical behaviour of Tournemire shale shows that theoretical predictions are in good agreement with the experimental data. In the present paper, the developed approach is applied to sedimentary rock materials, nevertheless, it can be generalized to any material that exhibits transverse isotropy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The cyclic behaviours of embedded offshore structures under different cyclic loading levels are related to the cyclic shakedown and degradation of the surrounding soils. In the present study, a damage-dependent bounding-surface model based on a newly proposed hardening rule was developed to predict the cyclic shakedown and degradation of saturated clay and the effect of the initial anisotropic stress state. By extending the Masing’s rule to the bounding-surface plasticity theory, the stress reversal point is taken as the generalised homological centre of the bounding surface. With movement of the generalised homological centre, at lower stress amplitudes, the cyclic process ends at a steady state, and cyclic shakedown is reached. At higher stress amplitudes, a damage parameter related to the accumulated deviatoric plastic strain is incorporated into the form of the bounding surface, which is hence able to contract to model degradations in stiffness and strength. To take into account the effects of initial anisotropic conditions on the cyclic behaviour of soils, an initial anisotropic tensor is introduced in the bounding surface. The developed model is validated through undrained isotropic and anisotropic cyclic triaxial tests in normally consolidated and overconsolidated saturated clay under both one-way and two-way loadings. Both cyclic shakedown and degradation are well reproduced by the model, as is the anisotropy effect induced by the initial anisotropic consolidation process.  相似文献   

15.
基于一种脆性指标确定岩石残余强度   总被引:1,自引:0,他引:1  
彭俊  荣冠  蔡明  彭坤 《岩土力学》2015,36(2):403-408
岩石的残余强度是岩石力学的重要指标,准确地评价岩石残余强度对于评价地下工程的稳定性以及优化岩体支护设计具有重要意义。基于岩石的三轴力学特性提出一种表征岩石峰后强度衰减行为的力学指标--岩石强度衰减系数,该指标可反映岩石的脆性程度,并提出岩石强度衰减系数与围压关系的幂函数模型。对22组不同成因的岩石常规三轴压缩试验数据进行幂函数模型参数拟合,发现不同岩石拟合所得参数离散性较大,分析其原因主要与岩石矿物组成和岩石结构特征等因素相关。在此基础上提出基于强度衰减方法确定岩石残余强度的方法,分析表明,该方法能够很好地拟合岩石残余强度试验数据,并能反映岩石结构性质对残余强度的影响。  相似文献   

16.
针对粗粒料的应变软化、剪胀等力学特性,通过考虑以剪切带为标志的应变局部化现象,建立了具有广泛适用性的剪切损伤力学模型。损伤模型采用了包体理论中的剪切带数学简化,基于应变等价原理、Weibull分布,推导了粗粒料的应力-应变关系方程。从剪胀作用的机制出发,提出可以描述剪胀弱化的轴向塑性应变和体积塑性应变的非线性函数关系。结合粗粒料三轴压缩试验中的伺服过程,提出了基于遗传算法的损伤模型参数确定方法。通过开展不同围压下的粗粒料三轴压缩试验,对剪切损伤力学模型进行验证,进一步分析了参数演化对粗粒料强度和变形特征的影响。研究结果表明,考虑应变局部化特征的剪切损伤力学模型可以高精度的模拟粗粒料的应变软化和剪胀等特征,有效揭示剪切带内部变形对试样整体宏观变形的影响机制,模型中剪切带参数和围压的关系与粗粒料细观机制一致,计算得到强度组成与颗粒破碎、重组特征较为吻合。  相似文献   

17.
18.
蒋明镜  刘俊  周卫  奚邦禄 《岩土力学》2018,39(4):1153-1158
天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服系数与水合物饱和度之间的函数关系,并修正了原有的结构性砂土破损规律,建立了深海能源土弹塑性本构模型。另外,根据该模型模拟了另外一组深海能源土三轴剪切试验和等向固结压缩试验。计算结果表明:新建立的深海能源土本构模型可以有效模拟深海能源土剪切强度随水合物饱和度之间的增长关系;随着水合物饱和度的增加,三轴压缩试验中深海能源土峰值强度及割线模量(E50)逐渐增加,等向固结压缩试验中屈服强度增加,与试验结果有较好的一致性,表明了该模型的合理性。  相似文献   

19.
蒋明镜  周卫  刘静德  李涛 《岩土力学》2016,37(12):3347-3355
在岩土破损力学基础上,基于微观破损机制,提出了考虑各向异性的结构性砂土本构理论。采用Lade-Duncan强度准则考虑中主应力对抗剪强度的影响;采用考虑颗粒排列组构的各向异性状态变量A反映各向异性对土体强度和变形的影响;通过相似扩大重塑土的屈服面反映结构性对土性的影响;通过引入非相关联流动法则考虑各向异性和结构性对土体塑性变形的影响。同时,将基于微观力学机制的损伤演化规律引入结构性土的硬化规律;该硬化规律同时考虑了塑性体积应变和剪切应变对各向异性结构性土强度的影响。然后将该模型用于模拟室内三轴压缩试验,初步验证了该模型的合理性和适用性。  相似文献   

20.
This paper presents a micromechanics-based elastoplastic damage model for quasi-brittle rocks under a compressive stress state. The plastic strain is considered to be related to frictional sliding along micro-cracks, and it is coupled inherently with damage evolution. By following a homogenization procedure, we determine the free energy of the matrix-cracks system. The thermodynamic force associated with the inelastic strain contains a back stress, which controls material hardening. Next, in order to determine plastic flow and crack propagation, we propose a Coulomb-type friction criterion, which is used as the plastic yielding function, and a damage criterion based on strain energy release rate. These thermodynamic formulations with a micro–macro scale change allow reducing significantly the number of model parameters, as compared to phenomenological models. Our model is applied to simulate triaxial compression tests on two sets of diabase samples. The first sample set is cored from a fresh diabase rock mass, and the second from a slightly weathered one. Comparisons between numerical predictions and test data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号