首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
拱坝非线性地震反应分析   总被引:1,自引:0,他引:1  
以乌东德拱坝为对象,进行了拱坝非线性地震反应分析。结果表明:坝体损伤区域明显大于坝体混凝土按线弹性材料计算时最大主应力超过抗拉强度的区域,说明传统方法低估了拱坝的开裂范围,偏于危险;考虑基岩的非线性后,坝体损伤总体上要有所减小;坝基岩体剪胀角对坝基岩体的屈服和坝体混凝土的损伤都有影响,但是规律不明确,因此应该进行基岩剪胀角的敏感性分析。  相似文献   

3.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

4.
The linear response of a selected arch dam to harmonic upstream, cross-stream or vertical ground motion is presented for a wide range of the important system parameters characterizing the properties of the dam, impounded water, reservoir boundary materials and foundation rock. Based on these frequency response functions, the hydrodynamic and foundation flexibility effects in the dynamic response of arch dams are investigated.  相似文献   

5.
The response of two arch dams to spatially varying ground motions recorded during earthquakes is computed by a recently developed linear analysis procedure, which includes dam–water–foundation rock interaction effects and recognizes the semi‐unbounded extent of the rock and impounded water domains. By comparing the computed and recorded responses, several issues that arise in analysis of arch dams are investigated. It is also demonstrated that spatial variations in ground motion, typically ignored in engineering practice, can have profound influence on the earthquake‐induced stresses in the dam. This influence obviously depends on the degree to which ground motion varies spatially along the dam–rock interface. Thus, for the same dam, this influence could differ from one earthquake to the next, depending on the epicenter location and the focal depth of the earthquake relative to the dam site. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A dynamic overloading model test has been carried out on a shaking table for an arch dam of 278 m in height to investigate its behaviours under strong earthquake. The model system included the arch dam with contraction joints, part of reservoir, partial foundation rock with topographic feature near the dam. A damping boundary consisting of viscous liquid has been used to simulate the effect of dynamic energy emission to far field, which made the dynamic interaction between dam and foundation in model arch dam system be represented properly. Three sets of different seismic waves of design level have been used as the input to investigate the difference in the responses of arch dam. Artificial waves of different levels have been used to verify the behaviours of arch dam under seismic overloading. Since the opening of joints during strong earthquake reduced the response acceleration and tensile arch stress, cantilever stress on downstream face exceeded the tensile strength first for the model dam. And the arch dam responded in a non‐linear way when input seismic load increased. Some cracks appeared near abutments, and the damage made the natural frequency of arch dam to drop obviously, but the static function did not seem to change for the model tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A time-domain method for the analysis of arch dam-foundation rock dynamic interaction during earthquake was proposed, and the dynamic relaxation technique was adopted to obtain the initial static response for dynamic analysis by [Du et al. (2005). The paper has been contributed to Bulletin of earthquake engineering]. In this paper, a nonlinear explicit method in time domain considering the opening and closing effect of contact joints on arch dam during earthquake is further proposed by introducing the dynamic contact force model into the method. The simulation accuracy of dynamic contact force model is verified by comparing its calculation result and test result of scale model on shaking table. Finally, the influence of joints on the seismic response of Xiaowan arch dam is studied by the proposed method and some conclusions are given.  相似文献   

8.
The overall damping of linear arch dam-water-foundation rock systems depends on the material damping of dam concrete, the material and radiation damping of semi-unbounded foundation rock, and the dam-water interaction. In this paper, the effective damping ratio of these factors is separately evaluated for Mauvoisin arch dam in Switzerland to quantitatively discuss their contributions, and to guide the damping selection in the numerical analysis. This paper also aims to investigate if the material and radiation damping of the foundation rock can be replaced by increasing the material damping of the dam to simplify numerical analysis models. The seismic responses of Mauvoisin arch dam are analyzed using the semi-unbounded and massless foundation models, respectively. The results show that the overall effective damping ratio of the system can be approximately expressed as the summation of the individual effective damping and thus the increased material damping of the dam can approximate the material and radiation damping of the semi-unbounded foundation rock.  相似文献   

9.
An integrative seismic safety evaluation of an arch dam should include all sources of nonlinearities, dynamic interactions between different components and the external loads. The present paper investigates the calibration procedure and nonlinear seismic response of an existing high arch dam. The first part explains the conducted analyses for the static and thermal calibrations of the dam based on site measurements. The second part investigates the nonlinear seismic analysis of the calibrated model considering the effect of joints, cracking of mass concrete, reservoir–dam–rock interaction, hydrodynamic pressure inside the opened joints and the geometric nonlinearity. Penetration of the water inside the opened joints accelerates the damage process. The integrative seismic assessment of a case study shows that the dam will fail under the maximum credible earthquake scenario. The dam is judged to be severely damaged with extensive cracking and the joints undergo opening/sliding. A systematic procedure is proposed for seismic and post-seismic safety of dams.  相似文献   

10.
Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.  相似文献   

11.
The available substructure method and computer program for earthquake response analysis of arch dams, including the effects of dam–water–foundation rock interaction and recognizing the semi‐unbounded size of the foundation rock and fluid domains, are extended to consider spatial variations in ground motions around the canyon. The response of Mauvoisin Dam in Switzerland to spatially varying ground motion recorded during a small earthquake is analyzed to illustrate the results from this analysis procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Effects of two important factors on earthquake response of high arch dams are considered and combined into one program. These factors are: effects of radiation damping of the infinite canyon and local non-linearity of the contraction joint opening between the dam monoliths. For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting, thus allowing the nonlinear dam system to be solved in the time domain. The earthquake uniform free-field input at the dam-canyon interface is used. An engineering example is given to demonstrate the significant effects of the radiation damping on the structure response.  相似文献   

13.
Seismic responses of a 292‐m high arch dam were studied by experiment on a shaking table. The model system included the arch dam with contraction joints, a part of a reservoir, and a partial foundation with a topographic feature near the dam. Potential rock wedges on the abutments and the mechanical properties including uplift on the kinematic planes were carefully simulated. A damping boundary consisting of a viscous liquid was introduced to simulate the effect of dynamic energy emission to far field, which made the dynamic interaction between the dam and the foundation be adequately represented in the model test of an arch dam system. Dynamic responses of the arch dam system under a sequence of seismic loadings in increasing strength were examined. Eleven cracks or overstresses on the model dam due to the earthquake excitations were observed, and consequently, its natural frequency dropped by about 14%, but the model dam was stable under the hydrostatic load of the impounded water after the test. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
拱坝横缝影响及有效抗震措施的研究   总被引:6,自引:0,他引:6  
大量研究结果和某些拱坝的地震震害表明,横缝对拱坝的地震响应有很大的影响。通过采用非光滑方程组方法以及考虑碰撞时刻动量、动能守恒来模拟横缝所引起的动接触问题,同时为了提高计算效率,采用隐-显式积分方法对坝-基系统的动力平衡方程进行求解。针对在拱坝中上部配筋这一抗震措施,也作了探讨。通过对小湾拱坝的分析,为高拱坝工程抗震措施的选择提供技术依据。  相似文献   

15.
采用非线性地震波动反应分析方法,将坝体、地基、库水的强震反应本质上作为满足体系中接触面边界约束条件的波传播问题,在时域内以显式有限元方法求解。在不同概率水平的地震波作用下进行高拱坝与地基体系的有限元时程分析,并建议了以坝体位移反应发生突变为依据的拱坝体系整体失稳判断准则,从而建立了进行高拱坝体系整体抗震安全评价的方法,并以小湾拱坝为算例,对其抗震安全度作出初步评价。  相似文献   

16.
An experimental study of non-linear mechanisms that may occur during intense seismic response of arch dams is described in this paper. The presentation deals with three types of non-linearity that were observed during shaking table model studies: monolith joint opening, cantilever cracking, and reservoir cavitation at the dam face. The monolith joint opening phenomenon was represented by a segmental arch ring model that simulated a horizontal slice of a prototype dam. The cantilever cracking and reservoir cavitation mechanisms were studied using a model gravity dam section. The principal conclusion of the investigation was that shaking table experiments provide a practical means of studying the non-linear earthquake response of concrete arch dams, including their actual failure mechanisms.  相似文献   

17.
有缝拱坝-地基系统非线性地震波动反应分析方法   总被引:12,自引:3,他引:9  
拱坝坝体中缝界面在地震作用下的开、合模拟对拱坝地震反应有重要影响。目前在拱坝地震反应分析中应用的一些模型,如Fenves模型、Dowling的三参数模型,存在对缝界面的接触状态模拟精度不高的问题,这对于准确评价工程上关心的缝界面最大张开率是不足的。此外,坝基中存在的断层、节理、裂隙待软弱夹层的非线性力学特性和无限地基能量辐射作用对拱坝地震反应也有重要影响。在拱坝地震反应分析中同时考虑这三种影响因素  相似文献   

18.
A procedure for three-dimensional (3-D) coupling of finite elements (FEs), boundary elements (BEs) and infinite boundary elements (IBEs) is presented for the numerical modelling of seismic interaction between arch dams and rock canyons. First, a system of coupling 3-D boundary and infinite boundary elements is developed for simulation of infinite and irregular canyons and for determination, in the frequency domain, of impedance functions on the dam-canyon interface. Secondly, the impedance functions for all degrees-of-freedom are transformed approximately into frequency independent discrete parameters by a curve fitting technique. Finally, these discrete parameters are combined with the dam structure which is discretized by finite elements, thus allowing the response of the arch dam-canyon system to be evaluated. The proposed procedure is efficient because it permits the seismic analysis of arch dam-canyon interaction by the substructure technique in the time domain. To demonstrate both the validity and efficiency of the present procedure, the response of an arch dam-canyon system is obtained under unit impulse acting on the dam-canyon interface as the free field input. Very good agreement is noted when comparing the frequency response determined from the time domain with that from the frequency domain under harmonic excitation applied on the interface of the dam-canyon.  相似文献   

19.
A seismic stability assessment of arch dam-foundation systems is presented using a comprehensive approach,in which the main factors that significantly influence the seismic response of an arch dam-foundation system are considered.A large scale finite element model with over 1 million degrees of freedom is constructed for the Baihetan arch dam(289 m high),which is under construction in the Southwest of China.In particular,the complicated geological conditions with faults intersecting interlayer shear weakness zones at the dam base and the dam abutment resisting force body is modeled in the analysis.Three performance indices are adopted to assess the seismic stability of the arch dam.The results demonstrate that the opening of the joints of the Baihetan arch dam is small and the water stop installed between the joints would not be torn during a design earthquake.The yielding formed in the interface between the dam and foundation does not reach the grouting curtain that would remain in an elastic state after an earthquake.The yielding zones occurring on the upper portion of the dam faces extend 1/8 thickness of block section into the dam body and thus cantilever blocks need not be concerned with sliding stability.The faults and interlayer shear weakness zones in the near field foundation exhibit severe yielding,and a potential sliding surface is penetrated.Although the factor of safety against sliding of the surface fluctuates with a decreased trend during an earthquake,the minimum instantaneous value reaches 1.02 and is still larger than 1.0.Therefore,a conclusion is drawn that the Baihetan arch dam-foundation system will remain stable under the design earthquake.  相似文献   

20.
A comprehensive study of non‐linear seismic response of arch dams with contraction joint opening and joint reinforcements has been conducted. A numerical model of contraction joint reinforcements is presented for optimization control of the joint opening. The objective of this control is to reduce the joint opening and expectantly to balance the sustained loads between the horizontal and the vertical components of the dam, thus avoiding an overstress in the cantilever while retaining the release of arch tensile stresses to some extent. Several parameter studies such as critical element size and required number of joints to be simulated for convergence are also performed. As an engineering application, a 292‐m high arch dam (the Xiaowan arch dam) and the Big Tujunga dam are analysed in detail. The results demonstrate that the joint opening and the corresponding load transfer from the arch to cantilever components of the dam during strong earthquakes are substantial. It is also evident that by providing sufficient strength and reinforcement flexibility, the joint opening can be controlled to some extent. However, the stress redistribution due to reinforcement control is not sufficient to avoid the overstress in the cantilever for the Xiaowan arch dam. Thus, alternative measures are discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号