首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harmonic wave response of two 3-D rigid surface foundations   总被引:1,自引:0,他引:1  
A boundary element methodology is developed for studying the response of a system of two rigid, massless or massive, surface foundations of arbitrary plan-forms to various harmonic waves under three-dimensional conditions. The method employs the frequency domain Green's function for the surface of the elastic half-space, thereby restricting the discretization only to the soil-foundation interfaces, and isoparametric quadratic quadrilateral boundary elements for increased accuracy. Extensive comparison studies with other known numerical solutions confirm the high accuracy of the proposed method. Detailed parametric studies are conducted in order to study the harmonic wave response of two square foundations as a function of the kind of incident wave, the angles of wave incidence, the wave frequency, the separation distance between the foundations and the amount of mass in each foundation and compare it against that of a single foundation for assessing the through the soil coupling effect.  相似文献   

2.
The dynamic response of three-dimensional rigid surface foundations of arbitrary shape is numerically obtained. The foundations are placed on a linear elastic, isotropic and homogeneous half-space representing the soil medium and are subjected to either external dynamic forces or seismic waves of various kinds and directions, with a general transient time variation. The problem is formulated in the time domain by the boundary element method and the response is obtained by a time step-by-step integration. Two examples dealing with three-dimensional rectangular foundations are presented in detail, together with comparisons with other methods, in order to document the accuracy of the method. The main advantages of the proposed method are that, unlike frequency domain techniques, it provides directly the transient response and forms the basis for extension to the case of non-linear behaviour.  相似文献   

3.
A computationally efficient boundary integral equation technique to calculate the dynamic response of a group of rigid surface foundations bonded to a layered viscoelastic half-space and subjected to external forces and seismic waves is presented. The technique relies on an iterative scheme which minimizes in-core memory requirements and takes advantage of any geometrical symmetry of the foundations. Extensive results for the case of two rigid square foundations placed at different separations and bonded to a viscoelastic half-space are presented. It was found that the choice of discretization of the foundations has a marked effect on the calculated impedance functions for extremely small separations. Illustrative results for a case of several closely-spaced foundations bonded to a layered half-space are also presented.  相似文献   

4.
A study on the dynamic response of three-dimensional flexible foundations of arbitrary shape, embedded in a homogenous, isotropic and linear elastic half-space is presented. Both massive and massless foundations are considered. The soil-foundation system is subjected to externally applied forces, and/or to obliquely incident seismic waves. The numerical method employed is a combination of the frequency domain Boundary Element Method, which is used to simulate the elastic soil medium, and the Finite Element Method, on the basis of which the stiffness matrix of the foundation is obtained. The foundation and soil media are combined by enforcing compatibility and equilibrium conditions at their common interface. Both relaxed and completely bonded boundary conditions are considered. The accuracy of the proposed methodology is partially verified through comparison studies with results reported in the literature for rigid embedded foundations.  相似文献   

5.
A numerical method of analysis is presented for the determination of the steady-state vertical vibration of rigid foundations with arbitrary three-dimensional geometries resting on the surface of a layered soil medium. The method utilizes the flexibility concept applied to steady-state periodic problems and it is solved in the frequency domain. The accuracy of the method is verified by comparison with several published solutions for massless, smooth rigid rectangular foundations on a homogeneous, isotropic elastic half-space. Parametric solutions are presented to study the dynamic behaviour of massless, smooth rigid rectangular foundations on a homogeneous, elastic stratum.  相似文献   

6.
The boundary element method is used to obtain dynamic stiffness functions of rigid cylindrical foundations embedded in a uniform or layered viscoelastic half-space. Dynamic stiffness functions of hemispherical foundations embedded in a uniform half-space are also computed. The direct integral equation formulation is used in combination with the complete space point load fundamental solution that is integrated numerically along the azimuthal coordinate. The approach is easy to implement because of the simplicity of the fundamental solution. The numerical results obtained by this method for cylindrical and hemispherical foundations are very close to corresponding published results obtained by different procedures. A parametric study shows the important effects of the Poisson's ratio on the dynamic stiffness functions of cylindrical foundations embedded in a uniform viscoelastic half-space. The effect of the bedrock compliance on the stiffness functions is also shown in the case of cylindrical foundations embedded in a soil layer that rests on a bedrock.  相似文献   

7.
8.
A half-space finite element and a consistent transmitting boundary in a cylindrical coordinate system are developed for analysis of rigid circular (or cylindrical) foundations in a water-saturated porous layered half-space. By means of second-order paraxial approximations of the exact dynamic stiffness for a half-space in plane-strain and antiplane-shear conditions, the corresponding approximation for general three-dimensional wave motion in a Cartesian coordinate system is obtained and transformed in terms of cylindrical coordinates. Using the paraxial approximations, the half-space finite element and consistent transmitting boundary are formulated in a cylindrical coordinate system. The development is verified by comparison of dynamic compliances of rigid circular foundations with available published results. Examination of the advantage of the paraxial condition vis-á-vis the fixed condition shows that the former achieves substantial gain in computational effort. The developed half-space finite element and transmitting boundary can be employed for accurate and effective analysis of foundation dynamics and soil–structure interaction in a porous layered half-space.  相似文献   

9.
An efficient discrete model for predicting the dynamic through-the-soil interaction between adjacent rigid, surface foundations supported by a homogeneous, isotropic and linear elastic half-space is presented. The model utilizes frequency-independent springs and dashpots, and the foundation mass, for the consideration of soil–foundation interaction. The through-the-soil coupling of the foundations is attained by frequency-independent stiffness and damping functions, developed in this work, that interconnect the degrees of freedom of the entire system of foundations. The dynamic analysis of the resulting coupled system is performed in the time domain and includes the time lagging effects of coupled dynamic input due to wave propagation using an appropriate modification of the Wilson-θ method. The basic foundation interaction model is also extended to the evaluation of coupled building-foundation systems. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the dynamic response of rigid strip foundations of arbitrary geometry embedded in a homogeneous elastic half-space. The embedded rigid foundation is modelled by an equivalent domain in a uniform half-space which is subjected to an appropriate body force field. The components of the impedance matrix are determined through the solution of a linear simultaneous equation system which is established by invoking rigid body displacements of discrete locations within the equivalent domain and appropriate equilibrium consideration. It is found that high numerical efficiency and flexibility can be achieved using the body force model when compared to boundary integral formulations through the selection of appropriate displacement influence functions and a ‘parent domain’ in the analysis. Numerical results are presented to illustrate the influence of the embedment ratio, frequency of excitation, foundation geometry and Poisson's ratio on the vertical, horizontal, rocking and coupled impedances of a single embedded foundation. The effect on the impedance due to the presence of an adjacent embedment is investigated for various distances between foundations and embedment ratios.  相似文献   

11.
This paper shows an effective implementation of the half-plane Green function for surface strip impulses (Lamb's problem), which was previously developed in a closed form by the authors, into the time-domain boundary element method for the analysis of related initial boundary value problems. The time-stepping algorithm utilizing Heaviside step function makes the solution process free from the Rayleigh wave front singularity. Illustrative analyses performed include that: First, the response due to an impulsive uniform strip loading is dealt with in order to check the accuracy of the present solution and to interpret the associated wave motion in the medium. Second, a rigid massless strip surface foundation is analysed when subjected to various impulsive loadings in vertical, horizontal and rotational directions to observe which wave is most concerned with the respective foundation motion. The field response is also of interest with respect to distance attenuation. Third, the dynamic cross-interaction between active and passive foundations through soil is investigated when multiple strip foundations are placed separately on a half-space with a certain distance.  相似文献   

12.
三维层状地基空沟主动隔振分析   总被引:3,自引:2,他引:3       下载免费PDF全文
基于薄层法在研究层状介质中波的传播问题的高效性、边界单元法处理无限域问题的精确性,结合二者的优点提出三维层状地基薄层法基本解答,建立了基于三维层状半空间薄层法位移基本解答的半解析动力边界元法。该方法可有效的分析多层场地的动力问题,解决土-结构动力相互作用问题。同时分别对粘弹性上软下硬地基及上硬下软地基的三维空沟主动隔振进行了详细的分析。结果表明,两种情况下采用空沟屏障隔振均可以取得一定的隔振效果;同时,地基分层参数对空沟隔振体系的隔振效果影响显著。  相似文献   

13.
This paper proposes a coupled fluid layer–foundation–poroelastic half-space vibration model to study how still water affects foundations operating underwater. As an example, we consider the problem of the vertical vibration of a rigid disk on a poroelastic half-space covered by a fluid layer having a finite depth. The solution of the disk vibration problem is obtained using the boundary conditions at the free surface of the fluid layer and the boundary conditions at the fluid layer–poroelastic medium interface. The solution is expressed in terms of dual integral equations that are converted into Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic impedance coefficient are examined based on different water depths, poroelastic materials, disk permeabilities and frequencies of excitation. Based on the numerical results, it is proposed that the hydrodynamic pressure caused by the foundation vibration is the intrinsic reason that the existence of a fluid layer has such a great effect on the dynamic characteristics of the foundation. In many cases, the hydrodynamic pressure caused by the foundation vibration cannot be ignored when designing dynamic underwater foundations. These results are helpful in understanding the dynamic response of foundations under still water without water waves, such as foundations in pools, lakes and reservoirs.  相似文献   

14.
A numerical procedure is proposed to investigate the transient response of a group of rigid strip foundations resting on an elastic, homogeneous half-space subjected to either external forces or seismic motions. A fundamental solution is presented for uniform strip loadings with Heaviside function time-dependence applied on the half-space. In the procedure, each of the foundations is discretized into subelements. The tractions between the half-space and the subelements are assumed constant at every time step. The through-soil coupling effects between the foundations are studied numerically.  相似文献   

15.
The dynamic soil–structure interaction of a rigid rectangular foundation with the subsoil represents a mixed-boundary value problem. This problem is formulated in terms of a system of coupled Fredholm integral equations of the first kind. The subsoil is modelled by a homogeneous, linear-elastic and isotropic half-space which is perfectly bonded to the rigid, rectangular foundation. An approximate solution for the resultant loads between the foundation and the half-space due to a unit forced displacement or rotation is obtained using the Bubnov–Galerkin method. Using this method the displacement boundary value conditions are exactly satisfied and the contact stress distributions between the foundation and the half-space are approximated by series expansions of Chebyshev polynomials. This method provides a simple means of studying the soil-structure interaction of rectangular foundations with different inertia properties.  相似文献   

16.
The dynamic response of contacting fluid and fluid-saturated poroelastic half- spaces to a time-harmonic vertical point force or a point pore pressure is investigated. The solutions are formulated using the boundary conditions at the fluid-porous medium interface. The point load solutions are then used to solve the dynamic problem of the vertical vibration of a rigid disc (both permeable and impermeable discs are included) on the surface of the poroelastic half-space. The contact problems are solved by integrating the point force and point pore pressure solutions over the contact area with unknown discontinuous force and pore pressure distributions, which are determined from the boundary conditions. The solutions are expressed in terms of dual integral equations, which are converted to Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic compliance coefficient for the cases with or without fluid overlying the poroelastic half-space are presented to show the effects of the fluid. The influence of the permeability condition of the disc on the compliance of the poroelastic half-space is investigated. The displacement, vertical stress, pore pressure in the poroelastic half-space and water pressure in the fluid half-space are also examined for different poroelastic materials and frequencies of excitation. The present results are helpful in the study of the dynamic response of foundations on the seabed under seawater.  相似文献   

17.
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.  相似文献   

18.
A five-parameter discrete model that approximates the dynamic force4isplacement relationship for rigid foundations undergoing vertical vibrations on a uniform elastic half-space is presented. The model involves a combination of two springs, two viscous dampers and a mass. Values of the parameters for circular, square and rectangular foundations placed on the surface or embedded in an elastic half-space are listed. The parameters are obtained by minimizing the discrepancy between the force4isplacement relation for the model and that obtained by solution of the mixed boundary-value problem of the rigid foundation on an elastic half-space. The definition of an appropriate input motion to represent wave excitation is also discussed. The input motion to the discrete model differs from the input motion that should be used in a continuum model.  相似文献   

19.
The dynamic behaviour of a finite number of rigid, adjacent foundations on the surface of a linear-elastic, isotropic and homogeneous halfspace due to a far-field excitation of the Rayleigh type is the subject of the present work. The dynamic behaviour of this system differs from that of a single foundation subjected to the same excitation due to the existence of the natural coupling between adjacent foundations caused by the wave propagation through the underlying soil. For the determination of the diffraction forces acting on the foundations an analytical procedure is followed. The stresses at the interfaces between the foundations and subsoil are approximated by series expansions of orthogonal polynomials. It is interesting to notice that, apart from the loads appearing in the direction of incidence, additional loads perpendicular to the given incidence direction act on the foundations due to scattered waves. Their intensity depends on the excitation frequency and the distance between the foundations. The method followed here can be applied for the determination of the dynamic loads acting on fixed foundations in the case of a seismic excitation of relatively long duration.  相似文献   

20.
A semi-analytical model for the evaluation of dynamic impedance of rigid surface footing bonded to multi-layered subsoil is proposed. The technique is based on the dual vector form of wave motion equation and Green's influence function of subdisk for horizontally layered half-space. The multi-layered half-space is divided into a quite large number of mini-layers and the precise integration method (PIM) is introduced for the numerical implementation. The PIM is highly accurate for solving sets of first-order ordinary differential equations with specified two-end boundary conditions. It can produce numerical results of Green's influence functions up to the precision of computer used. The dual vector form of wave motion equation makes the combination of two adjacent mini-layers/layers very easy. As a result, the computational effort for the evaluation of Green's influence function of the multi-layered half-space is reduced to a great extent. In order to satisfy the mixed boundary condition at the surface, the footing–soil interface is discretized into a number of uniformly spaced subdisk-elements. Comparisons illustrating the efficiency and accuracy of the proposed approach are made with a number of solutions available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号