首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

2.
季宪军  梁瑛  欧国强  杨顺  王钧  陆桂红 《岩土力学》2015,36(8):2402-2408
由无黏粗颗粒与黏性泥浆组成的黏性碎屑流,其运动过程会产生不连续变形,基于连续介质假定的流体理论无法描述。根据散体材料理论,在考虑黏性泥浆影响情况下,以PFC3D为平台,编写黏性碎屑坡面运动数值模型试验程序,根据泥浆(成都黏土,密度1.413 g/cm3)室内拉伸试验和旋转剪切试验结果,设置数值模型参数,开展黏性碎屑流坡面运动数值模型试验,再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,并通过同尺寸黏性碎屑坡面运动物理模型试验进行验证。结果表明:基于散体材料理论的PFC3D离散单元法能很好地再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,为深入分析黏性泥浆介质影响下黏性碎屑坡面运动过程提供新的途径。  相似文献   

3.
We present a micromechanical approach based on zero-thickness interface elements for modelling advanced localization and cracking states of cemented granular materials, such as reservoir sandstones. The proposed methodology is capable of reproducing the complex behaviour of intergranular and intragranular localization, cracking, and fracturing of rock formation that leads to sanding in hydrocarbon production. The model is calibrated at the macroscale, using only a few physical parameters, by reproducing the typical behaviour of compression element tests. The model exhibits clear transition behaviour from brittle dilatant to ductile compactant behaviour with increasing confining stress. The methodology is implemented for sand production prediction analysis based on the simulation of 2D micromechanical models of hollow cylinder cross sections. The obtained results are compared well with published experimental data from hollow cylinder tests characterized by strong scale effect in the range of small perforations.  相似文献   

4.
Studies in the past have tried to reproduce the mechanical behaviour of granular materials by proposing constitutive relations based on a common assumption that model parameters and parameters describing the properties, including gradation of individual grains are inevitably linked. However successful these models have proved to be, they cannot account for the changes in granular assembly behaviour if the grains start to break during mechanical loading. This paper proposes to analyse the relation between grading change and the mechanical behaviour of granular assembly. A way to model the influence of grain breakage is to use a critical state‐based model. The influence of the amount of grain breakage during loading, depending on the individual grain strength and size distribution, can be introduced into constitutive relations by means of a new parameter that controls the evolution of critical state with changes in grain size distribution. Experimental data from a calcareous sand, a quartz sand, and a rockfill material were compared with numerical results and good‐quality simulations were obtained. The main consequences of grain breakage are increased compressibility and a gradual dilatancy disappearance in the granular material. The critical state concept is also enriched by considering its overall relation to the evolution of the granular material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a constitutive model for time‐dependent behaviour of granular material. The model consists of 2 parts representing the inviscid and viscous behaviour of granular materials. The inviscid part is a rate‐independent hypoplastic constitutive model. The viscous part is represented by a rheological model, which contains a high‐order term denoting the strain acceleration. The proposed model is validated by simulating some element tests on granular soils. Our model is able to model not only the non‐isotach behaviour but also the 3 creep stages, namely, primary, secondary, and tertiary creep, in a unified way.  相似文献   

6.
An elastoplastic-viscoplastic constitutive model for soils is presented in this study, based on an original approach concerning viscous modelling. In this approach, the viscous behaviour is defined by internal viscous variables and a viscous yield surface. The model has been developed from a basic elastoplastic model (CJS model) by considering an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’. This model is able to explain the time-dependent behaviour of soils such as creep (primary, secondary and un-drained creep rupture), stress relaxation and strain rate effects in static and cyclic loadings. The existing problems in the classical elasto-viscoplastic models related to the plasticity failure, the rapid loading and the cyclic loading are solved in the proposed model. The physical meanings and the identification strategy of model parameters are clearly given. The validation on certain triaxial test results and the simulation of cyclic triaxial test indicate the capacity of this model in prediction of time-dependent behaviour of clayey soils.  相似文献   

7.
孙逸飞  沈扬 《岩土力学》2018,39(4):1219-1226
分数阶微分理论在土体静力黏弹性本构模型中得到了广泛应用,然而,其在动力弹塑性模型中的应用尚不多见。为此,基于分数阶微积分理论分析了粗粒料在循环荷载下的变形特性,提出了粗粒料在循环荷载下的分数阶应变率;并以此为基础,进一步建立了粗粒料受静动力荷载作用下的边界面塑性力学本构模型。所提出模型包含10个参数,均可以运用常规三轴试验获得。为了验证所提出模型,选取了几种已有不同文献中的不同粗粒料试验数据进行了模拟,发现,所提出的模型可以较好地模拟粗粒料在静动力加载下的应力-应变行为,对于循环荷载下的长期变形也能较好地预测。  相似文献   

8.
A program for the simulation of two‐dimensional (2‐D) fluid flow at the microstructural level of a saturated anisotropic granular medium is presented. The program provides a numerical solution to the complete set of Navier–Stokes equations without a priori assumptions on the viscous or convection components. This is especially suited for the simulation of the flow of fluids with different density and viscosity values and for a wide range of granular material porosity. The analytical solution for fluid flow in a simple microstructure of porous medium is used to verify the computer program. Subsequently, the flow field is computed within microscopic images of granular material that differ in porosity, particle size and particle shape. The computed flow fields are shown to follow certain paths depending on air void size and connectivity. The permeability tensor coefficients are derived from the flow fields, and their values are shown to compare well with laboratory experimental data on glass beads, Ottawa sand and silica sands. The directional distribution of permeability is expressed in a functional form and its anisotropy is quantified. Permeability anisotropy is found to be more pronounced in the silica sand medium that consists of elongated particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
刘先珊  陈治 《岩土力学》2013,34(10):2984-2990
随着黏度较大的油藏陆续投入开发,油藏黏性对储层砂岩力学特性的影响研究意义重大。基于柱坐标系建立射孔试验的三维颗粒流数值模型,考虑不同黏性的流体运动对砂岩力学响应的影响,反映油井的出砂过程。砂岩的宏观应力曲线说明流速相同时,随着黏滞系数的增大,切向应力和偏应力均增大,使得砂岩剪切破坏的几率增大,砂岩更容易屈服破坏而出砂。另外,砂岩黏结应力图说明油井附近的应力较大,且随着黏滞系数增大,黏结张拉应力的增大是局部的,而剪应力的增大是全局的,且变化趋势更明显;颗粒的旋转也说明随着流体黏性的增大,颗粒旋转增大,砂岩形成离散颗粒而出砂的几率增大。上述结果与实际开采中的砂岩力学响应吻合,说明了在相同的外界条件下,黏性越大的流体运动对砂岩受力的影响越大,出砂越明显,该成果对不同黏性的油藏开采采用有效的防砂方法提供了重要的科学依据。  相似文献   

10.
In this paper, a model geosynthetic-reinforced soil retaining walls (GRS-RW) is tested by vertically loading it through a rough footing on the top near the retaining wall and the results are simulated by a sophisticated nonlinear Finite Element Method (FEM) having a novel rate dependent constitutive model for both the backfill material and the geosynthetic reinforcement. Usually, polymer geosynthetic reinforcement is known to exhibit more-or-less rate-dependent stress–strain or load–strain behavior due to their viscous properties. The geomaterials (i.e., clay, sand, gravel and soft rock) also exhibit viscous properties. The viscous behavior of geometrials are quite different from that of the polymer based geosynthetic-reinforcements. It has been revealed recently that viscous behavior of sand is a kind of temporary effect, which vanishes with time. So the rate-dependent deformation of backfill reinforced with polymer geosynthetic reinforcement becomes highly complicated due to interactions between the elasto-viscoplastic properties of backfill and reinforcement. In the present study, a scaled model geosynthetic-reinforced soil retaining wall is tested with a vertically loaded rough rigid footing. The results of the model test are simulated by using an appropriate elasto-viscoplastic constitutive model of both sand and geogrid embedded in a nonlinear plane strain FEM.  相似文献   

11.
The smoothed particle hydrodynamics (SPH) method was recently extended to simulate granular materials by the authors and demonstrated to be a powerful continuum numerical method to deal with the post-flow behaviour of granular materials. However, most existing SPH simulations of granular flows suffer from significant stress oscillation during the post-failure process, despite the use of an artificial viscosity to damp out stress fluctuation. In this paper, a new SPH approach combining viscous damping with stress/strain regularisation is proposed for simulations of granular flows. It is shown that the proposed SPH algorithm can improve the overall accuracy of the SPH performance by accurately predicting the smooth stress distribution during the post-failure process. It can also effectively remove the stress oscillation issue in the standard SPH model without having to use the standard SPH artificial viscosity that requires unphysical parameters. The predictions by the proposed SPH approach show very good agreement with experimental and numerical results reported in the literature. This suggests that the proposed method could be considered as a promising continuum alternative for simulations of granular flows.  相似文献   

12.
Modelling cyclic behaviour of granular soils under both drained and undrained conditions with a good performance is still a challenge. This study presents a new way of modelling the cyclic behaviour of granular materials using deep learning. To capture the continuous cyclic behaviour in time dimension, the long short-term memory (LSTM) neural network is adopted, which is characterised by the prediction of sequential data, meaning that it provides a novel means of predicting the continuous behaviour of soils under various loading paths. Synthetic datasets of cyclic loading under drained and undrained conditions generated by an advanced soil constitutive model are first employed to explore an appropriate framework for the LSTM-based model. Then the LSTM-based model is used to estimate the cyclic behaviour of real sands, ie, the Toyoura sand under the undrained condition and the Fontainebleau sand under both undrained and drained conditions. The estimates are compared with actual experimental results, which indicates that the LSTM-based model can simultaneously simulate the cyclic behaviour of sand under both drained and undrained conditions, ie, (a) the cyclic mobility mechanism, the degradation of effective stress and large deformation under the undrained condition, and (b) shear strain accumulation and densification under the drained condition.  相似文献   

13.
孙逸飞  陈成 《岩土力学》2019,40(5):1813-1822
粗粒土的剪胀行为具有状态依赖特性。为了考虑这一特性,不同的状态依赖变量被唯像地提出,并被经验性地内嵌入已有剑桥、修正剑桥等剪胀方程中。基于分数阶梯度律,用理论推导出了分数阶状态依赖剪胀方程,并阐述了分数阶数的物理意义。所得剪胀比大小受3个因素影响:分数阶求导阶数、当前加载应力以及当前应力到临界状态应力的距离。当分数阶求导阶数从1开始增大时,分数阶剪胀曲线自修正剑桥剪胀曲线向剑桥剪胀曲线移动;而当求导阶数从1开始减小时,分数阶剪胀曲线逐渐远离修正剑桥剪胀曲线;当求导阶数等于1时,分数阶剪胀曲线与修正剑桥剪胀曲线重合。为验证所提出的状态依赖剪胀方程,基于该方程进一步建立了砂土的状态依赖分数阶塑性力学本构模型,并对砂土和堆石料的三轴排水与不排水试验结果进行了模拟。研究表明,基于状态依赖分数阶剪胀方程建立的本构模型,可以合理地描述砂土在不同初始状态及加载条件下的应力-应变行为。与砂土UH模型预测结果对比发现,UH模型预测较好。  相似文献   

14.
颗粒破碎是粒状材料在高应力状态下的一种基本现象。为了研究冻结砂土中颗粒破碎对应力应变关系的影响,将冻结砂土视为复合颗粒材料,忽略冰的压融,考虑内摩擦角随应力状态的变化,构建一个适用于冻结砂土的考虑颗粒破碎的非线性本构模型。构建过程分为三步,首先是基于三轴剪切前后颗粒分析对冻结砂土颗粒破碎模式和产生机理进行探讨;其次是基于考虑颗粒破碎的能量平衡方程,对冻土在三轴剪切试验过程中的颗粒破碎耗能进行分析,结果表明颗粒破碎耗能随轴向应变呈双曲线变化趋势;最后应用考虑颗粒破碎的剪胀方程修正沈珠江三参数非线性模型中的体积切线模量νt,得到一个考虑颗粒破碎的非线性本构模型,模型参数可以通过单轴压缩试验和常规三轴试验确定。将原模型和修正后模型的计算结果与控制温度为-6℃,围压为1 MPa、4 MPa、6 MPa、8 MPa和10 MPa时冻结砂土的试验结果进行对比,结果表明该模型能够较好的模拟冻结砂土从低围压到高围压的应变软化特征与剪胀特征。   相似文献   

15.
程永辉  胡胜刚  王汉武  张成 《岩土力学》2020,41(6):1881-1886
深埋砂层作为一种散粒结构体系,其原状力学特性的准确测定是岩土工程中的难点问题,旁压试验是一种理想的深层原位测试方法,但在深度效应上缺乏定量评价标准。为解决旁压试验深度效应问题,采用自主研制的物理模型试验系统,模拟深埋砂层的受力状态,通过施加不同的上覆压力 模拟不同深度下的旁压试验,获得了旁压测试指标旁压模量EM、临塑压力Pf与上覆压力 之间的关系,提出了采用临塑压力Pf确定地基承载力特征值fak的修正方法。试验结果表明:旁压试验确实存在深度效应,随着试验深度的增大,上覆压力 相继增大,但旁压模量EM的变化并不明显,临塑压力Pf与上覆压力 呈线性相关关系。为深埋砂层物理力学性质的确定提供参考和依据。  相似文献   

16.
In this paper, an existing elastoplastic constitutive model, originally developed for granular soils, is adapted to describe the stress–strain behaviour of cemented granular soils. The existing model (CJS), due to its modular formulation, can be easily developed to take into account different supplementary behavioural aspects in soil mechanics. In the present study, the failure mechanism of the CJS model is modified by introducing the essential aspects in the behaviour of cemented granular soils in its formulation. All of the model parameters have clear physical meaning and can be identified using classical laboratory tests. A set of direct relations between model parameters and famous mechanical parameters of soils such as internal friction angle and cohesion at peak and residual states is presented. In order to validate the model, the results of triaxial and uniaxial tests in the compression and extension performed on cemented granular materials are used. The validation results indicate the good capability of the proposed model.  相似文献   

17.
A finite element approach is presented to determine the bearing capacity of shallow footings on silica sand deposits. The approach can take into account the effects of relative density and stress level on the shear strength of granular soil and is applicable to a fairly large effective stress range. The strength of sand is characterized by a non-linear Mohr–Coulomb criterion which depends on maximum and critical friction angles, widely used parameters in engineering practice. The results of analysis indicate that this approach yields reliable predictions of bearing capacity and, in particular, it can model the volumetric behaviour of the soil at failure.  相似文献   

18.
This paper focuses on the influence of the initial void ratio on the evolution of the passive earth pressure and the formation of shear zones in a dry sand body behind a retaining wall. For the numerical simulation a rigid and very rough retaining wall undergoing a horizontal translation against the backfill is considered. The essential mechanical properties of cohesionless granular soil are described with a micro-polar hypoplastic model which takes into account stresses and couple stresses, pressure dependent limit void ratios and the mean grain size as a characteristic length. Numerical investigations are carried out with an initially medium dense and initially loose sand using a homogeneous and random distribution of the initial void ratio. The geometry of calculated shear zones is discussed and compared with a corresponding laboratory model test.  相似文献   

19.
冻结砂土力学性质的离散元模拟   总被引:1,自引:0,他引:1  
周凤玺  赖远明 《岩土力学》2010,31(12):4016-4020
基于离散单元法颗粒流理论,土体颗粒单元间采用接触黏结模型中来考虑冻土中冰的胶结作用,建立了冻结砂土的颗粒流模型。通过改变计算模型中颗粒单元的参数,模拟了在不同冻结温度以及不同围压下冻结砂土的宏观力学性质,并与冻结砂土的室内试验结果进行了比较,结果表明:颗粒流方法可以较好地模拟冻结砂土的应力-应变关系以及剪切带的发展变化过程,颗粒流细观参数对温度具有显著的依赖性。研究结果对离散单元法在特殊土中的应用具有一定的理论和应用价值。  相似文献   

20.
Based on previous experimental findings and theoretical developments, this paper presents the formulation and numerical algorithms of a novel constitutive model for sand with special considerations for cyclic behaviour and accumulation of large post-liquefaction shear deformation. Appropriate formulation for three volumetric strain components enables the model to accurately predict loading and load reversal behaviour of sand, fully capturing the features of cyclic mobility. Compliance with the volumetric compatibility condition, along with reversible and irreversible dilatancy, allows for physically based simulation of the generation and accumulation of shear strain at zero effective stress after initial liquefaction. A state parameter was incorporated for compatibility with critical state soil mechanics, enabling the unified simulation of sand at various densities and confining pressures with a same set of parameters. The determination methods for the 14 model parameters are outlined in the paper. The model was implemented into the open source finite-element framework OpenSees using a cutting-plane stress integration scheme with substepping. The potentials of the model and its numerical implementation were explored via simulations of classical drained and undrained triaxial experiments, undrained cyclic torsional experiments, and a dynamic centrifuge experiment on a single pile in liquefiable soil. The results showed the model’s great capabilities in simulating small to large deformation in the pre- to post-liquefaction regime of sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号