首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Elastic closed-form solutions for the displacements and stresses in a transversely isotropic half-space subjected to various buried loading types are presented. The loading types include finite line loads and asymmetric loads (such as uniform and linearly varying rectangular loads, or trapezoidal loads). The planes of transverse isotropy are assumed to be parallel to its horizontal surface. These solutions are directly obtained from integrating the point load solutions in a transversely isotropic half-space, which were derived using the principle of superposition, Fourier and Hankel transformation techniques. The solutions for the displacements and stresses in transversely isotropic half-spaces subjected to linearly variable loads on a rectangular region are never mentioned in literature. These exact solutions indicate that the displacements and stresses are influenced by several factors, such as the buried depth, the loading types, and the degree and type of rock anisotropy. Two illustrative examples, a vertical uniform and a vertical linearly varying rectangular load acting on the surface of transversely isotropic rock masses, are presented to show the effect of various parameters on the vertical surface displacement and vertical stress. The results indicate that the displacement and stress distributions accounted for rock anisotropy are quite different for those calculated from isotropic solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
三维横观各向同性成层地基的传递矩阵解   总被引:1,自引:0,他引:1  
艾智勇  成怡冲 《岩土力学》2010,31(Z2):25-30
通过解耦变换推导出三维直角坐标系下横观各向同性地基的非耦合状态方程;利用双重Fourier变换以及Cayley-Hamilton定理得到了单层地基的传递矩阵;结合边界条件和层间连续条件进而得其传递矩阵解。编制了相应程序并进行了数值计算与分析,结果表明:数值结果与已有文献结果十分吻合,地基的横观各向同性性质与成层性质对受荷地基中竖向位移和应力的影响较为显著。  相似文献   

3.
We rederive and present the complete closed-form solutions of the displacements and stresses subjected to a point load in a transversely isotropic elastic half-space. The half-space is bounded by a horizontal surface, and the plane of transverse isotropy of the medium is parallel to the horizontal surface. The solutions are obtained by superposing the solutions of two infinite spaces, one acting a point load in its interior and the other being free loading. The Fourier and Hankel transforms in a cylindrical co-ordinate system are employed for deriving the analytical solutions. These solutions are identical with the Mindlin and Boussinesq solutions if the half-space is homogeneous, linear elastic, and isotropic. Also, the Lekhnitskii solution for a transversely isotropic half-space subjected to a vertical point load on its horizontal surface is one of these solutions. Furthermore, an illustrative example is given to show the effect of degree of rock anisotropy on the vertical surface displacement and vertical stress that are induced by a single vertical concentrated force acting on the surface. The results indicate that the displacement and stress accounted for rock anisotropy are quite different for the displacement and stress calculated from isotropic solutions. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
艾智勇  曹国军 《岩土力学》2011,32(Z2):58-63
利用弹性矩形板与多层地基表面的竖向位移协调条件与光滑接触条件,由横观各向同性多层地基应力与位移非耦合的传递矩阵解,推导出弹性矩形板下竖向应力和位移的解析解。在此基础上,编制了相应的程序,并进行了数值计算。计算结果表明:矩形板刚度对板底竖向位移及板中心下的竖向应力有着较为显著的影响;板底竖向位移及板中心下的竖向应力随着板刚度的增加而减小,相同荷载作用下横观各向同性地基与均匀各向同性地基模型的计算结果差异较大,实际工程中很有必要采用更符合土体性质的横观各向同性地基模型  相似文献   

5.
Summary  This paper presents a simple graphical method for computing the displacement beneath/at the surface of a transversely isotropic half-space subjected to surface loads. The surface load can be distributed on an irregularly-shaped area. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the half-space. Based on the point load solutions presented by the authors, four influence charts are constructed for calculating the three displacements at any point in the interior of the half-space. Then, by setting z=0 of the derived solutions, another four influence charts for computing the surface displacements can also be proposed. These charts are composed of unit blocks. Each unit block is bounded by two adjacent radii and arcs, and contributes the same level of influence to the displacement. Following, a theoretical study was performed and the results showed that the charts for interior displacements are only suitable for transversely isotropic rocks with real roots of the characteristic equation; however, the charts for surface displacements are suitable for all transversely isotropic rocks. Finally, to demonstrate the use of the new graphical method, an illustrative example of a layered rock subjected to a uniform, normal circular-shaped load is given. The results from the new graphical method agree with those of analytical solutions as well. The new influence charts can be a practical alternative to the existing analytical or numerical solutions, and provide results with reasonable accuracy.  相似文献   

6.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This work presents analytical solutions for displacements caused by three‐dimensional point loads in a transversely isotropic full space, in which transversely isotropic planes are inclined with respect to the horizontal loading surface. In the derivation, the triple Fourier transforms are employed toyield integral expressions of Green's displacement; then, the triple inverse Fourier transforms and residue calculus are performed to integrate the contours. The solutions herein indicate that the displacements are governed by (1) the rotation of the transversely isotropic planes (?), (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′), (3) the geometric position (r, φ, ξ) and (4) the types of loading (Px, Py, Pz). The solutions are identical to those of Liao and Wang (Int. J. Numer. Anal. Methods Geomechanics 1998; 22 (6):425–447) if the full space is homogeneous and linearly elastic and the transversely isotropic planes are parallel to the horizontal surface. Additionally, a series of parametric study is conducted to demonstrate the presented solutions, and to elucidate the effect of the aforementioned factors on the displacements. The results demonstrate that the displacements in the infinite isotropic/transversely isotropic rocks, subjected to three‐dimensional point loads could be easily determined using the proposed solutions. Also, these solutions could realistically imitate the actual stratum of loading situations in numerous areas of engineering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A novel procedure associated with the precise integration method (PIM) and the technique of dual vector is proposed to effectively calculate the magnitude and distribution of deformations in a homogeneous multilayered transversely isotropic medium. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the soil system. The linearly elastic medium is subjected to four types of vertically acting axisymmetric loads prescribed either at the external surface or in the interior of the soil medium. There are no limits for the thicknesses and number of soil layers to be considered. By virtue of the governing equations of motion and the constitutive equations of the transversely isotropic elastic body, and based on the Hankel integral transform and a dual vector formulation in a cylindrical coordinate system, the partial differential motion equations can be converted into first‐order ordinary differential matrix equations. Applying the approach of PIM, it is convenient to obtain the solutions of ordinary differential matrix equations for the continuously homogeneous multilayered transversely isotropic elastic soil in the transformed domain. The PIM is a highly accurate algorithm to solve the sets of first‐order ordinary differential equations, which can ensure to achieve any desired accuracy of the solutions. What is more, all calculations are based on the standard method with the corresponding algebraic operations. Computational efforts can be reduced to a great extent. Finally, numerical examples are provided to illustrate the accuracy and effectiveness of the proposed approach. Some more cases are analyzed to evaluate the influences of the elastic parameters of the transversely isotropic media on the load‐displacement responses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A time domain boundary element method (BEM) for evaluating stresses in an axisymmetric soil mass undergoing consolidation has been developed. Previous BEM work on axisymmetric poroelasticity for boundary displacements and pore pressures is extended to permit the computation of stresses at both boundary and interior points. The stress formulation preserves the surface-only discretization. The boundary displacement integral equation is progressively differentiated to obtain the related stress and strain integral equations. Explicit expressions for the steady-state axisymmetric fundamental solutions are derived in this process. The transient components of the integrands are obtained directly from the transformation of the three-dimensional kernels into a cylindrical system. Numerical implementation of these integral equations is carried out within a general purpose BEM computer code and several illustrative examples are presented to validate the method.  相似文献   

10.
This paper presents a numerical solution for the analysis of the axisymmetric thermo‐elastic problem in transversely isotropic material due to a buried heat source by means of extended precise integral method. By virtue of the Laplace–Hankel transform applied into the basic governing equations, an ordinary differential matrix equation is achieved, which describes the relationship between the generalized stresses and displacements in transformed domain. An extended precise integration method is introduced to solve the aforementioned matrix equation, and the actual solution in the physical domain is acquired by inverting the Laplace–Hankel transform. Numerical examples are carried out to demonstrate the accuracy of the proposed method and elucidate the influence of the character of transverse isotropy, the anisotropy of linear expansion coefficient, the anisotropy of thermal diffusivity, and medium's stratification on the thermo‐elastic response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A semi-analytical solution based on the transfer matrix technique is proposed to analyze the stresses and displacements in a two-dimensional circular opening excavated in transversely isotropic formation with non-linear behavior. A non-isotropic far field can be accounted for and the process of excavation is simulated by progressive reduction of the internal radial stress. A hyperbolic stress–strain law is proposed to take into account the non-linear behavior of the rock. The model contains seven independent parameters corresponding to the five elastic constants of an elastic material with transverse isotropy and to the friction coefficient and cohesion along the parallel joints (weakness planes). This approach is based on the discretization of the space into concentric rings. It requires the establishment of elementary solutions corresponding to the stress and displacement fields inside each ring for given conditions at its boundaries. These solutions, based on complex variable theory, are obtained in the form of infinite series. The appropriate number of terms to be kept for acceptable approximation is discussed. This non-linear model is applied to back analyze the convergence measurements of Saint-Martin-la-Porte access gallery. Short-term and long-term ground parameters are evaluated.  相似文献   

12.
王小岗 《岩土力学》2011,32(1):253-260
研究了横观各向同性饱和土地基在地表动力荷载作用下的三维瞬态响应。基于饱和多孔介质的三维Biot波动理论,利用Laplace变换,建立圆柱坐标系下横观各向同性饱和土的波动方程;解耦波动方程后,根据算子理论,并借助Fourier展开和Hankel变换技术,得到瞬态荷载作用下,饱和土介质的土骨架位移和应力、孔隙水相对位移和孔隙水压力的一般解;利用一般解,给出横观各向同性饱和地基在地表集中荷载激励下的瞬态Lamb问题的解答。数值算例结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的瞬态动力特性。  相似文献   

13.
A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half‐spaces is presented. The analysis is performed in the frequency domain and the steady‐state structure response is obtained. The method is based on a non‐singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half‐space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil–structure interface tractions and for the displacement field throughout the half‐space are also shown. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
平行层状岩体的自重应力场   总被引:1,自引:1,他引:1  
刘毅  李炜 《岩土力学》2001,22(1):63-66
将平行层状复合岩体视为等效的模观各向同性体,推导出自重荷载下地应力的理论解,并分析了两个水平主应力受岩层倾角和岩体弹性参数的影响,结果表明,与各向同性岩体相比,水平主应力的变化范围增大了,并且两上水平主应力可能不再相等,而岩层倾角对水平主应力之比影响显著,当倾角从0-90度变化时,两个水平主应力能从相等到相差内倍,这也说明在地应力研究中,考察岩体的各向异性是十分必要的,所导出的自重应力场解答对地下工程问题具有一定的实用价值。  相似文献   

15.
横观各向同性饱和土体三维粘弹性动力分析   总被引:2,自引:2,他引:0  
祝彦知  李冬霞  方志 《岩土力学》2005,26(10):1557-1564
采用针对横观各向同性饱和土体u-w形式三维粘弹性动力方程,考虑土骨架的粘弹性性质且基于粘弹性理论,通过运用Fourier 展开、Laplace 和Hankel 积分变换方法和引入中间变量,将含有粘弹性参数的六元二阶偏微分运动控制方程组,化为2组各含4个未知变量的常微分方程组,从而给出了柱坐标系下粘弹性横观各向同性饱和土体在非轴对称动力荷载作用下的瞬态反应的土骨架位移分量、孔隙流体相对于土骨架的位移分量瞬态反应一般解。在此基础上,引入初始条件和边界条件,对垂直向和水平向动力荷载作用下半空间边值问题进行了求解。根据动力时域解答的一般解,利用Laplace和Hankel 数值逆变换技术,编制了相应的数值计算程序。并进行了实例验证和弹性、粘弹性解的对比分析。结果表明,在进行横观各向同性饱和土体动力分析时,考虑土骨架的粘弹性是必要的。  相似文献   

16.
Earlier solutions (Bull. Seismol. Soc. Amer. 1985; 75 :1135–1154; Bull. Seismol. Soc. Amer. 1992; 82 :1018–1040) of deformations caused by the movements of a shear or tensile fault in an isotropic half-space for finite rectangular sources of strain nucleus have been extended for a transversely isotropic half-space. Results of integrating previous solutions (Int. J. Numer. Anal. Meth. Geomech. 2001; 25 (10): 1175–1193) of deformations due to a shear or tensile fault in a transversely isotropic half-space for point sources of strain nucleus over the fault plane are presented. In addition, a boundary element (BEM) model (POLY3D:A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth's crust. M.S. Thesis, Stanford University, Department of Geology, 1993; 62) is given. Different from similar researches (e.g. Thomas), the Akaike's view on Bayesian statistics (Akaike Information Criterion Statistics. D. Reidel Publication: Dordrecht, 1986) is applied for inverting deformations due to a fault to obtain displacement discontinuities on the fault plane. An example is given for checking displacements predicted by proposed analytical expressions. Another example is generated for the use of proposed BEM model. It demonstrates the effectiveness of this model in exploring displacement behaviours of a fault. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the analytical layer element solutions for deformations of transversely isotropic elastic media subjected to nonaxisymmetric loading at an arbitrary depth. The state vectors for the nonaxisymmetric problem are deduced through the substitution of the Hu Hai‐chang solutions into the basic equations for the transversely isotropic elastic media. From the state vectors, the analytical layer element of a single layer is obtained in the Hankel transformed domain. The analytical layer element is an exact and symmetric stiffness matrix whose elements are without positive exponential functions, which can not only simplify the calculation but also improve the stability of computation. On the basis of the continuity conditions between adjacent layers, the global stiffness matrix is obtained by assembling the interrelated layer elements. The solutions for the multilayered elastic media in the transformed domain are obtained by solving the algebraic equation of the global stiffness matrix, which satisfies the boundary conditions. The actual solutions in the physical domain are further obtained by inverting the Hankel transform. Finally, some cases are analyzed to verify the solutions and evaluate the influences of the transversely isotropic character and stratified character of the media on the load–displacement responses. The numerical results show that the variations of the elastic properties between layers have a great effect on the displacements of the multilayered media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the closed‐form solutions for the elastic fields in two bonded rocks induced by rectangular loadings. Each of the two bonded rocks behaves as a transversely isotropic linear elastic solid of semi‐infinite extent. They are completely bonded together at a horizontal surface. The rectangular loadings are body forces along either vertical or horizontal directions and are uniformly applied on a rectangular area. The rectangular area is embedded in the two bonded rocks and is parallel to the horizontal interface. The classical integral transforms are used in the solution formulation, and the elastic solutions are expressed in the forms of elementary harmonic functions for the rectangular loadings. The stresses and displacements in the rocks induced by both the horizontal and vertical body forces are also presented. The numerical results illustrate the important effect of the anisotropic bimaterial properties on the stress and displacement fields. The solutions can be easily implemented for numerical calculations and applied to problems encountered in rock mechanics and engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
岩体材料的各向异性导致其中的光滑裂纹在扩展后会变为折线裂纹。对于折线裂纹,其折线处裂纹面外法线方向不惟一,不能用连续单元离散。为此,在光滑裂纹问题方法的基础上,引入4种新的不连续单元来离散折线处裂纹面,建立了适用于折线裂纹问题的对偶边界元方法,该方法基于横观各向同性基本解。算例验证表明,该方法具有较好的精度。最后用该方法分析了横观各向同性岩体中的折线裂纹,得到了该类裂纹的应力强度因子。当裂纹面上作用法向均布力,横观各向同性岩体介质中的矩形光滑裂纹发生弯折时,折线两侧的裂纹面在张开时存在抑制效应,从而导致折线裂纹裂尖应力强度因子小于原光滑裂纹。同时还发现,随裂纹面的逐渐弯折,其裂纹面对各向同性面的倾角发生变化,因此,其裂尖断裂特性还受到岩体各向异性的影响。  相似文献   

20.
A transversely isotropic linear elastic half‐space, z?0, with the isotropy axis parallel to the z‐axis is considered. The purpose of the paper is to determine displacements and stresses fields in the interior of the half‐space when a rigid circular disk of radius a completely bonded to the surface of the half‐space is rotated through a constant angle θ0. The region of the surface lying out with the circle r?a, is free from stresses. This problem is a type of Reissner–Sagoci mixed boundary value problems. Using cylindrical co‐ordinate system and applying Hankel integral transform in the radial direction, the problem may be changed to a system of dual integral equations. The solution of the dual integral equations is obtained by an approach analogous to Sneddon's (J. Appl. Phys. 1947; 18 :130–132), so that the circumferential displacement and stress fields inside the medium are obtained analytically. The same problem has already been approached by Hanson and Puja (J. Appl. Mech. 1997; 64 :692–694) by the use of integrating the point force potential functions. It is analytically proved that the present solution, although of a quite different form, is equivalent to that given by Hanson and Puja. To illustrate the solution, a few plots are provided. The displacements and the stresses in a soil deposit due to a rotationally symmetric force or boundary displacement may be obtained using the results of this paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号