首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many geotechnical problems involve undrained behavior of clay and the capacity in undrained loading. Most constitutive models used today are effective stress based and only indirectly obtain values for the undrained shear strength. To match the design profiles of undrained shear strengths, in active (A), direct simple shear (D) and passive (P) modes of loading are complicated. This paper presents the elastoplastic constitutive model NGI‐ADP which is based on the undrained shear strength approach with direct input of shear strengths. Consequently, exact match with design undrained shear strengths profiles is obtained and the well‐known anisotropy of undrained shear strength and stiffness is accounted for in the constitutive model. A non‐linear stress path‐dependent hardening relationship is used, defined from direct input of failure strains in the three directions of shearing represented by triaxial compression, direct simple shear and triaxial extension. With its clear input parameters the model has significant advantages for design analysis of undrained problems. The constitutive model is implemented, into finite element codes, with an implicit integration scheme. Its performance is demonstrated by a finite element analysis of a bearing capacity problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The undrained bearing capacity of shallow circular piles in non-homogeneous and anisotropic clay is investigated by the lower bound (LB) finite element limit analysis (FELA) under two-dimensional (2D) axisymmetric condition using second-order cone programming, and the new solution of the problem is presented. Modified from the isotropic von Mises yield criterion, a cross-anisotropic undrained strength criterion of clays under the axisymmetric state of stress requiring three input shear strengths in triaxial compression, direct simple shear, and triaxial extension is employed in the 2D axisymmetric LB FELA. Parametric studies on the effects of pile embedment ratio, dimensionless strength gradient, anisotropic strength ratio, and pile roughness are investigated extensively, while the predicted failure mechanisms associated with these parameters are discussed and compared. Numerical results of undrained end bearing capacity of shallow circular piles are summarized in the form of design tables that are useful for design practice and represent a new contribution to the field of pile capacity considering the combined effects of undrained strength non-homogeneity and anisotropy.  相似文献   

3.
The critical state concept has been widely used in soil mechanics. The purpose of this study is to apply this concept in the framework of multi-mechanism elastoplasticity. The developed model has two yield surfaces: one for shear sliding and one for compression. In this model, the location of the critical state line is explicitly considered and related to the actual material density to control the peak strength and the phase transformation characteristics. The stress reversal technique is incorporated into the model for describing clay behavior under complex loading including changes of stress direction. The determination of the model parameters is discussed; it requires only one drained or undrained triaxial test up to failure with an initial isotropic consolidation stage. The model is used to simulate drained and undrained tests under monotonic loading with different over-consolidation ratios on various remolded and natural clays, including true triaxial tests with different Lode’s angles. Drained and undrained tests under cyclic loadings are also simulated by using the set of parameters determined from monotonic tests. The comparison between experimental results and numerical simulations demonstrate a good predictive ability of this new simple model.  相似文献   

4.
The proposed general analytical model describes the anisotropic, elasto-plastic, path-dependent, stress-strain-strength properties of inviscid saturated clays under undrained loading conditions. The model combines properties of isotropic and kinematic plasticity by introducing the concept of a field of plastic moduli which is defined in stress space by the relative configuration of yield surfaces. For any loading (or unloading) history, the instantaneous configuration is determined by calculating the translation and contraction (or expansion) of each yield surface. The stress-strain behaviour of clays can thus be determined for complex loading paths and in particular for cyclic loadings. The stress-strain relationships are provided for use in finite element analyses. The model parameters required to characterize the behaviour of any given clay can be derived entirely from conventional triaxial or simple shear soil test results. The model's extreme versatility is demonstrated by using it to formulate the behaviour of the Drammen clay under both monotonic and cyclic loading conditions. The parameters are determined by using solely the results from monotonic and cyclic strain-controlled simple shear experimental tests, and the model's accuracy is evaluated by applying it to predict the results of other tests such as (1) cyclic stress-controlled simple shear tests, (2) monotonic triaxial loading compression and unloading extension tests, and (3) cyclic stress- and strain-controlled triaxial tests on, this same clay. The theoretical predictions are found to agree extremely well with the experimental test results.  相似文献   

5.
The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests.  相似文献   

6.
张荣堂  Tom Lunne 《岩土力学》2003,24(5):705-709
展示了近海粘土指标特性与设计参数之间相关关系的研究结果。该项研究的一个重要目的是建立一个按统一方法测定的高质量的土性测试指标数据库。该数据库由10个场地组成,包括大西洋、挪威北海、挪威海、里海和2个沿海陆上地点。数据库分析表明,前期固结压力pc?与液限指数IL之间存在良好的相关关系,但当液限指数小于0.5时,数据比较分散。同时还发现,前期固结压力与由三轴压缩、三轴拉伸及直剪试验测定的不排水抗剪强度之间均有很好的线性相关关系。由此,以pc?与IL之间的关系为基础,提出了使用这些线性关系式估算近海粘土原位不排水强度su的方法及建议。  相似文献   

7.
Undisturbed specimens of a soft clayey silt have been taken vertically, horizontally and at 45° to the vertical at the base of a trench and submitted to consolidation and undrained triaxial compression and extension tests in the laboratory. Undrained shear strengths and compressibilities are found to be strongly dependent on sample orientation, but the effective stress strength parameters are shown to be much more influenced by stress path than sample orientation. The pore-pressure response vs axial strain is shown to be unaffected by sample orientation. Most of the anisotropic effects are shown to be eliminated by successively consolidating the specimens under isotropic pressure increments and re-testing in undrained shear. Some of the evidence from the experimental programme indicates that tension resisting bonds act between the grains of the soil specimens.  相似文献   

8.
The objective of this study is to derive an effective stress‐based constitutive law capable of predicting rate‐dependent stress–strain, stress path and undrained shear strength and creep behavior. The flow rule used in the MIT‐E3 model and viscoplasticity theory is employed in the derivation. The model adopts the yield surface capable of representing the yield behavior of the Taipei silty clay and assumes that it is initially symmetric about the K0‐line. A method is then developed to compute the gyration and expansion of the loading surface to simulate the anisotropic behavior due to the principal stress rotation after shear. There are 11 parameters required for the model to describe the soil behavior and six of them are exactly the same as those used in the Modified Cam‐clay model. The five additional parameters can be obtained by parametric studies or conventional soil tests, such as consolidation tests, triaxial compression and extension tests. Finally, verification of the model for the anisotropic behavior, creep behavior and the rate‐dependent undrained stress–strain and shear strength of the Taipei silty clay is conducted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
王建华  李书兆  周杨锐  刘晶磊 《岩土力学》2012,33(12):3521-3528
按照在最佳系泊点受倾斜荷载作用的张紧式吸力锚的破坏机制,建议了利用软土不排水循环剪切强度计算软土中吸力锚循环承载力的极限平衡分析方法。该方法考虑了平均系泊荷载在土中引起的平均剪应力对土体循环剪切强度、进而对锚循环承载力的影响。为了说明该方法的可行性,进行了大量张紧式吸力锚在平均系泊荷载与循环荷载共同作用下的承载力模型试验。依据试验结果确定了锚被竖向拔出土层时系泊点的位移破坏标准,并据此确定了与不同模型试验条件对应的循环承载力。进而利用循环三轴试验确定的土层不排水循环强度随平均应力的变化关系和实测的土层剪切强度,通过极限平衡分析计算了与模型试验对应的循环承载力。计算与模型试验结果比较表明,对于张紧式吸力锚被竖向拔出土层的破坏模式,计算结果比模型试验结果偏大,平均偏大1.9%,绝大多数偏差在10%以内。因此,对于软土中的张紧式吸力锚,如果采用该方法计算与竖向拔出土层破坏模式相应的循环承载力时,将结果减小10%是恰当的。  相似文献   

10.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

11.
Experimental evidence has indicated that the critical state line determined from undrained compression tests is not identical to that determined from undrained extension tests. The purpose of this paper is to investigate a modelling method that accounts for the non‐uniqueness of critical state lines in the compression and the extension testing conditions. Conventional elastic–plastic cap models can predict only a unique critical state line for the compression and the extension tests. A new micromechanical stress–strain model is developed considering explicitly the location of critical state line. The model is then used to simulate undrained triaxial compression and extension tests performed on isotropically consolidated samples with different over‐consolidated ratios. The predictions are compared with experimental results as well as that predicted by models with kinematic hardening of yield surface. All simulations demonstrate that the proposed micromechanical approach is capable of modelling the undrained compression and the undrained extension tests. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The undrained shear behaviour of sands has been a key topic after the devastating geo-disasters during the 1964 Niigata Earthquake in Japan. Extensive geo-technical soil tests, especially undrained triaxial compression tests, have revealed that the liquefaction phenomenon was the major cause for the disaster expansions. To numerically reproduce the liquefaction phenomenon, the pore-water pressure was coupled with a distinct element method. In this model, the dynamic changes in pore-water pressure were taken into consideration by the changes in volumetric strain and modulus of compressibility of water in the respective measurement spheres. Fluid-flows among the measurement spheres were controlled by Darcy’s law. The effective stress paths and steady state strengths in undrained triaxial compression tests associated with the wide ranges of initial void ratio were investigated. The effective mean stresses of medium-dense to dense numerical specimens at the steady state were negatively proportional to the initial void ratio. Loose numerical specimens reproduced quasi-liquefaction with the effective mean stresses that were less than 25% of the initial value. The medium-dense numerical specimens reproduced the phase transformation that was a typical characteristic of granular materials. The rolling restraints did not much influence of the effective angle of internal friction but strongly affected pore-water pressure behaviour within a certain range of initial void ratio.  相似文献   

13.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An anisotropic time-dependent bounding surface model for clays is developed by generalizing a previous time-independent model that adopts a flexible bounding surface. It is based on the framework for coupled elastoplasticity–viscoplasticity for clays and Perzyna’s overstress theory. Three viscoplastic parameters were introduced and explained in detail. The model was validated against undrained creep tests for both isotropically and anisotropically consolidated clays, undrained and drained stress relaxation tests on some undisturbed clays, and undrained triaxial tests with varying strain rates on natural Hong Kong marine deposit clay. The general agreement between the model simulations and test results was satisfactory. The varying effects of lower-level parameters were discussed on the undrained multistage stress relaxation response for normally consolidated soils which had been ignored in literature. The flexibility of the model in capturing the shear strengths, which is the unique feature of the current model, was shown in the simulations of time-dependent triaxial tests on Taipei silty clay. All the simulations show that the proposed model is a relatively practical model considering both anisotropy and time dependency of clays.  相似文献   

15.
为描述非饱和土的应力-应变特性,基于非饱和土三轴剪切试验,提出泊松比变化率(即切线泊松比随轴向应变的变化速率)的概念,发现非饱和土的切线模量和泊松比变化率均随轴向应变的增加呈指数衰减规律,基于此提出了一种描述非饱和土应力-应变关系的新非线性模型。该模型不仅能描述应变硬化,而且能描述应变软化;能对非饱和土三轴不固结不排水剪、固结排水剪、固结不排水剪试验的应力-应变关系进行描述;模型共包含6个参数,物理意义明确,确定方法简便。利用提出的模型对国内外文献中的三轴试验进行了模拟,结果表明,模拟结果与试验数据有很好的吻合度,从而验证了模型对试验数据的合理性和适用性。  相似文献   

16.
郭小青  朱斌  刘晋超  熊根  黄根清 《岩土力学》2016,37(4):1005-1012
为了获得广东珠江口海洋软土的不排水抗剪强度,分别开展了不固结不排水剪切和固结不排水剪切三轴试验、无侧限抗压试验、现场取土离心机正常固结模型地基的T-bar静力贯入试验以及现场十字板剪切试验和静力触探试验(CPT),并采用土力学经验公式进行计算,确定了珠江口海洋软土不排水抗剪强度沿深度的分布规律,并综合评价了各种方法的有效性。为了获得该区域软土的循环弱化规律,分别开展了循环动三轴试验、现场取土离心机正常固结模型地基的T-bar循环贯入试验和现场单桩水平循环加载试验,揭示了软土循环动模量比与循环次数之间的双对数线性关系,获得了3种试验条件下珠江口海洋软土的循环弱化因子。其研究结果可为该区域海洋建筑物设计提供直接依据,也可为其他类型工程提供借鉴。  相似文献   

17.
软黏土加载速率效应特性试验研究:进展与趋势   总被引:1,自引:0,他引:1  
大量的室内和现场试验都表明,软黏土的强度与变形速率相关。为了更深入地认识软黏土的加载速率效应特性,首先分析了一维应力条件下先期固结压力和三轴应力条件下不排水抗剪强度的加载速率效应及应力-应变关系的归一化,探讨了一维和三轴条件下的5个速率方程(2个指数形式和3个对数形式)在拟合黏土先期固结压力和不排水强度加载速率效应上的适用性;使用5个速率方程估计了一维和三轴条件下的加载速率参数,以及拟合了加载速率参数与液塑限的关系,并且分析了复杂应力(十字板剪切和旁压条件)下的非理想土单元体的黏土加载速率效应特性等;讨论了黏土加载速率效应特性在一维和三维、压缩与伸长、不同超固结比(OCR)条件下的统一性;最后,从香港黏土压缩与伸长和不同OCR条件下的剪缩、剪胀特性方面更深入地探讨了软黏土加载速率效应特性,并讨论了典型的剪缩、剪胀方程在黏土的力学特性模拟中的有效性。结果表明,为更好地描述黏土的应力剪胀特性,现有典型的剪胀关系需要更一步改进。  相似文献   

18.
An analysis of the vane test using an Arbitrary Lagrangian–Eulerian formulation within a finite element framework is presented. This is suitable for soft clays for which the test is commonly used to measure in situ undrained shear strength. Constitutive laws are expressed in terms of shear stress–shear strain rates, and that permits the study of time effects in a natural manner. An analysis of the shear stress distributions on the failure surface according to the material model is presented. The effect of the constitutive law on the shear band amplitude and on the position of the failure surface is shown. In general, the failure surface is found at 1–1·01 times the vane radius, which is consistent with some experimental results. The problem depends on two dimensionless parameters that represent inertial and viscous forces. For usual vane tests, viscous forces are predominant, and the measured shear strength depends mainly on the angular velocity applied. That can explain some of the comparisons reported when using different vane sizes. Finally, the range of the shear strain rate applied to the soil is shown to be fundamental when comparing experimental results from vane, triaxial and viscosimeter tests. Appart from that, an experimental relation between undrained shear strength and vane angular velocity has been reproduced by this simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
饱和软黏土动力学特性循环扭剪试验研究   总被引:2,自引:0,他引:2  
李驰  王建华 《岩土力学》2008,29(2):460-464
以饱和软黏土的循环扭剪试验研究为基础,阐明不固结不排水条件下饱和软黏土的动力学特性。在循环扭剪和循环三轴两种不同试验应力状态下,通过研究不同围压和不同静、动应力组合下饱和软黏土的应力等效破坏关系和应变等效破坏关系,提出在循环荷载作用下饱和软黏土的循环破坏同样遵循Mises屈服准则,且在Mises屈服准则下,饱和软黏土的循环强度趋于不变量。循环破坏的过程可以等效为一种拟静力弹塑性循环蠕变,建立了饱和软黏土循环累积变形随静荷载、循环荷载以及循环破坏振次之间的关系式。上述结论分别从应力和变形两个方面阐述饱和软黏土的动力学特性,与试验应力状态和围压无关,可以推广到一般应力状态下。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号