首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

2.
Data systematization using the constraints from the equation $$Cp = Cv + \alpha _P {}^2V_T K_T T$$ where C p, C v, α p, K T and V are respectively heat capacity at constant pressure, heat capacity at constant volume, isobaric thermal expansion, isothermal bulk modulus and molar volume, has been performed for tungsten and MgO. The data are $$K_T (W) = 1E - 5/(3.1575E - 12 + 1.6E - 16T + 3.1E - 20T^2 )$$ $$\alpha _P (W) = 9.386E - 6 + 5.51E - 9T$$ $$C_P (W) = 24.1 + 3.872E - 3T - 12.42E - 7T^2 + 63.96E - 11T^3 - 89000T^{ - 2} $$ $$K_T (MgO) = 1/(0.59506E - 6 + 0.82334E - 10T + 0.32639E - 13T^2 + 0.10179E - 17T^3 $$ $$\alpha _P (MgO) = 0.3754E - 4 + 0.7907E - 8T - 0.7836/T^2 + 0.9148/T^3 $$ $$C_P (MgO) = 43.65 + 0.54303E - 2T - 0.16692E7T^{ - 2} + 0.32903E4T^{ - 1} - 5.34791E - 8T^2 $$ For the calculation of pressure-volume-temperature relation, a high temperature form of the Birch-Murnaghan equation is proposed $$P = 3K_T (1 + 2f)^{5/2} (1 + 2\xi f)$$ Where $$K_T = 1/(b_0 + b_1 T + b_2 T^2 + b_3 T^3 )$$ $$f = (1/2)\{ [V(1,T)/V(P,T)]^{2/3} - 1\} $$ $$\xi = ({3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4})[K'_0 + K'_1 \ln ({T \mathord{\left/ {\vphantom {T {300}}} \right. \kern-\nulldelimiterspace} {300}}) - 4]$$ where in turn $$V(1,T) = V_0 [\exp (\int\limits_{300}^T {\alpha dT)]} $$ . The temperature dependence of the pressure derivative of the bulk modulus (K′1) is estimated by using the shock-wave data. For tungsten the data are K′0 = 3.5434, K′1 = 0.032; for MgO K′0 = 4.17 and K′1 = 0.1667. For calculating the Gibbs free energy of a solid at high pressure and at temperatures beyond that of melting at 1 atmosphere, it is necessary to define a high-temperature reference state for the fictive solid.  相似文献   

3.
Oxygen isotope fractionation between rutile and water   总被引:1,自引:0,他引:1  
Synthetic rutile-water fractionations (1000 ln α) at 775, 675, and 575° C were found to be ?2.8, ?3.5, and ?4.8, respectively. Partial exchange experiments with natural rutile at 575° C and with synthetic rutile at 475° C failed to yield reliable fractionations. Isotopic fractionation within the range 575–775° C may be expressed as follows: 1 $$1000\ln \alpha ({\rm T}i{\rm O}_{2 } - H_2 O) = - 4.1 \frac{{10^6 }}{{T_{k^2 } }} + 0.96$$ . Combined with previously determined quartz-water fractionations, the above data permit calibration of the quartz-rutile geothermometer: 1 $$1000\ln \alpha ({\text{S}}i{\rm O}_{2 } - Ti{\rm O}_{2 } ) = 6.6 \frac{{10^6 }}{{T_{k^2 } }} - 2.9$$ . When applied to B-type eclogites from Europe, as an example, the latter equation yields a mean equilibration temperature of 565° C.  相似文献   

4.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

5.
The equilibrium constants for the reaction (2) Rhodochrosite + Quartz=Pyroxmangite+CO2 obtained are:logK(2)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(9862 \pm 102)}}{T} \hfill \\+ (15.887 \pm 0.220) + (0.1037 \pm 0.0020)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ and for the reaction (3) Rhodochrosite+Pyroxmangite=Tephroite+CO2: logK(3)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(6782 \pm 205)}}{T} \hfill \\+ (11.296 \pm 0.304) + (0.0835 \pm 0.0030)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ The present data lie within reasonable limits of error of the values calculated from previous experimental results at P tot = 2000 bars.  相似文献   

6.
In the system Na2O-CaO-Al2O3-SiO2 (NCAS), the equilibrium compositions of pyroxene coexisting with grossular and corundum were experimentally determined at 40 different P-T conditions (1,100–1,400° C and 20.5–38 kbar). Mixing properties of the Ca-Tschermak — Jadeite pyroxene inferred from the data are (J, K): $$\begin{gathered} G_{Px}^{xs} = X_{{\text{CaTs}}} X_{{\text{Jd}}} [14,810 - 7.15T - 5,070(X_{{\text{CaTs}}} - X_{{\text{Jd}}} ) \hfill \\ {\text{ }} - 3,350(X_{{\text{CaTs}}} - X_{{\text{Jd}}} )^2 ] \hfill \\ \end{gathered} $$ The excess entropy is consistent with a complete disorder of cations in the M2 and the T site. Compositions of coexisting pyroxene and plagioclase were obtained in 11 experiments at 1,190–1,300° C/25 kbar. The data were used to infer an entropy difference between low and high anorthite at 1,200° C, corresponding to the enthalpy difference of 9.6 kJ/mol associated with the C \(\bar 1\) =I \(\bar 1\) transition in anorthite as given by Carpenter and McConnell (1984). The resulting entropy difference of 5.0 J/ mol · K places the transition at 1,647° C. Plagioclase is modeled as ideal solutions, C \(\bar 1\) and I \(\bar 1\) , with a non-first order transition between them approximated by an empirical expression (J, bar, K): $$\Delta G_T = \Delta G_{1,473} \left[ {1 - 3X_{Ab} \tfrac{{T^4 - 1,473^4 }}{{\left( {1,920 - 0.004P} \right)^4 - 1,473^4 }}} \right],$$ where $$\Delta G_{1,473} = 9,600 - 5.0T - 0.02P$$ The derived mixing properties of the pyroxene and plagioclase solutions, combined with the thermodynamic properties of other phases, were used to calculate phase relations in the NCAS system. Equilibria involving pyroxene+plagioclase +grossular+corundum and pyroxene+plagioclase +grossular+kyani te are suitable for thermobarometry. Albite is the most stable plagioclase.  相似文献   

7.
The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 $$\begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \hfill \\ Hedenbergite andradite magnetite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \hfill \\ Hedenbergite wollastonite andradite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \hfill \\ Wollastonite magnetite andradite \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \hfill \\ Andradite pseudowollastonite hematite \hfill \\ \end{gathered} $$ and $$log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } .$$ Oxygen-barometric scales are presented as follows: $$\begin{gathered} E = 12.51; D = 0.078; \hfill \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \hfill \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: $$\begin{gathered} E = 13.98; D = 0.0081; \hfill \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 $$\begin{gathered} E = 13.98;{\text{ }}D = 0.0081; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 0;}} \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-calcitequartz: 1 $$\begin{gathered} E = - 1.69;{\text{ }}D = - 0.199; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 2;}} \hfill \\ B = - 20,441 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-calcite: 1 $$\begin{gathered} E = - 17.36;{\text{ }}D = - 0.403; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 4;}} \hfill \\ B = - 11,720 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 \hfill \\ \end{gathered} $$ The oxygen fugacity of formation of those skarns where andradite and hedenbergite assemblage is typical can be calculated by using the above equations. The oxygen fugacity of formation of this kind of skarn ranges between carbon dioxide/graphite and hematite/magnetite buffers. It increases from the inside zones to the outside zones, and appears to decrease with the ore-types in the order Cu, Pb?Zn, Fe, Mo, W(Sn) ore deposits.  相似文献   

8.
Reversed phase equilibrium experiments in the system (Ca, Mg, Fe)2SiO4 provide four tielines at P?1 bar and 1 kbar and 800° C–1,100° C. These tielines have been used to model the solution properties of the olivine quadrilateral following the methods described by Davidson et al. (1981) for quadrilateral clinopyroxenes. The discrepancy between the calculated phase relations and the experimentally determined tielines is within the uncertainty of the experiments. The solution properties of quadrilateral olivines can be described by a non-convergent site-disorder model that allows for complete partitioning of Ca on the M2 site, highly disordered Fe-Mg cation distributions and limited miscibility between high-Ca and low-Ca olivines. The ternary data presented in this paper together with binary solution models for the joins Fo-Mo and Fa-Kst have been used to evaluate two solution parameters: $$\begin{gathered} F^0 \equiv 2(\mu _{{\rm M}o}^0 - \mu _{{\rm K}st}^0 ) + \mu _{Fa}^0 - \mu _{Fo}^0 = 12.660 (1.6) kJ, \hfill \\ \Delta G_*^0 \equiv \mu _{{\rm M}gFe}^0 + \mu _{FeMg}^0 - \mu _{Fo}^0 - \mu _{Fa}^0 = 7.030 (3.9) kJ. \hfill \\ \end{gathered} $$ . Ternary phase quilibrium data for olivines tightly constrain the value of F0, but not that for ΔG * 0 which describes nonideality in Fe-Mg mixing. From this analysis, we infer a function for the apparent standard state energy of Kst: $$\begin{gathered} \mu _{{\rm K}st}^0 = - 102.79 \pm 0.8 - (T - 298)(0.137026) \hfill \\ + (T - 298 - T1n(T/298))(0.155519) \hfill \\ + (T - 298)^2 (2.8242E - 05)/2 \hfill \\ + (T - 298)^2 (2.9665E + 03)/(2T(298)^2 ) kJ \hfill \\ \end{gathered} $$ where T is in Kelvins and the 298 K value is relative to oxides.  相似文献   

9.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

10.
Geochemical potential field is defined as the scope within the earth’s space where a given component in a certain phase of a certain material system is acted upon by a diffusion force, depending on its spatial coordinatesX, Y andZ. The three coordinates follow the relations: $$NF_{ix} = - \frac{{\partial \mu }}{{\partial x}}, NF_{iy} = - \frac{{\partial \mu }}{{\partial y}}, NF_{iz} = - \frac{{\partial \mu }}{{\partial z}}$$ The characteristics of such a field can be summarized as: (1) The summation of geochemical potentials related to the coordinatesX, Y, Z, or pseudo-velocity head, pseudo-pressure head and pseudo-potential head of a certain component in the earth is a constant as given by $$\mu _x + \mu _y + \mu _z = c$$ or $$\mu _{x2} + \mu _{y2} + \mu _{z2} = \mu _{x1} + \mu _{y1} + \mu _{z1} $$ Derived from these relations is the principle of geochemical potential conservation. The following relations have the same physical significance: $$\mu _k + \mu _u + \mu _p = c$$ or $$\mu _{k2} + \mu _{u2} + \mu _{p2} = \mu _{k1} + \mu _{u1} + \mu _{p1} $$ (2) Geochemical potential field is a vector field quantified by geochemical field intensity which is defined as the diffusion force applied to one molecular volume (or one atomic volume) of a certain component moving from its higher concentration phase to lower concentration phase. The geochemical potential field intensity is given by $$\begin{gathered} E = - grad\mu \hfill \\ E = \frac{{RT}}{x}i + \frac{{RT}}{y}j + \frac{{RT}}{z}K \hfill \\ \end{gathered} $$ The present theory has been inferred to interpret the mechanism of formation of some tungsten ore deposits in China.  相似文献   

11.
A great wealth of analytical data for fluid inclusions in minerals indicate that the major species of gases in fluid inclusions are H2O, CO2, CO, CH4, H2 and O2. Three basic chemical reactions are supposed to prevail in rock-forming and ore-forming fluids: $$\begin{gathered} H_2 + 1/2{\text{ O}}_{\text{2}} = H_2 O, \hfill \\ CO + 1/2{\text{ O}}_{\text{2}} = CO_2 , \hfill \\ CH_4 + 2{\text{O}}_{\text{2}} = CO_2 + 2H_2 O, \hfill \\ \end{gathered} $$ and equilibria are reached among them. \(\lg f_{O_2 } - T,{\text{ }}\lg f_{CO_2 } - T\) and Eh-T charts for petrogenesis and minerogenesis in the supercritical state have been plotted under different pressures. On the basis of these charts \(f_{O^2 } ,{\text{ }}f_{CO_2 } \) , Eh, equilibrium temperature and equilibrium pressure can be readily calculated. In this paper some examples are presented to show their successful application in the study of the ore-forming environments of ore deposits.  相似文献   

12.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   

13.
The biotite zone assemblage: calcite-quartz-plagioclase (An25)-phengite-paragonite-chlorite-graphite, is developed at the contact between a carbonate and a pelite from British Columbia. Thermochemical data for the equilibrium paragonite+calcite+2 quartz=albite+ anorthite+CO2+H2O yields: $$\log f{\text{H}}_{\text{2}} {\text{O}} + \log f{\text{CO}}_{\text{2}} = 5.76 + 0.117 \times 10^{ - 3} (P - 1)$$ for a temperature of 700°K and a plagioclase composition of An25. By combining this equation with equations describing equilibria between graphite and gas species in the system C-H-O, the following partial pressures: \(P{\text{H}}_2 {\text{O}} = 2572{\text{b, }}P{\text{CO}}_2 = 3162{\text{b, }}P{\text{H}}_2 = 2.5{\text{b, }}P{\text{CH}}_4 = 52.5{\text{b, }}P{\text{CO}} = 11.0{\text{b}}\) are obtained for \(f{\text{O}}_2 = 10^{ - 26}\) . If total pressure equals fluid pressure, then the total pressure during metamorphism was approximately 6 kb. The total fluid pressure calculated is extremely sensitive to the value of \(f{\text{O}}_2\) chosen.  相似文献   

14.
A unifying theory of kinetic rate laws, based on order parameter theory, is presented. The time evolution of the average order parameter is described by $$\langle Q\rangle \propto \smallint P(x)e^{^{^{^{^{^{^{ - xt} } } } } } } dx = L(P)$$ where t is the time, x is the effective inverse susceptibility, and L indicates the Laplace transformation. The probability function P(x) can be determined from experimental data by inverse Laplace transformation. Five models are presented:
  1. Polynomial distributions of P(x) lead to Taylor expansions of 〈Q〉 as $$\langle Q\rangle = \frac{{\rho _1 }}{t} + \frac{{\rho _2 }}{{t^2 }} + ...$$
  2. Gaussian distributions (e.g. due to defects) lead to a rate law $$\langle Q\rangle = e^{ - x_0 t} e^{^{^{^{^{\frac{1}{2}\Gamma t^2 } } } } } erfc\left( {\sqrt {\frac{\Gamma }{2}} t} \right)$$ where x 0 is the most probable inverse time constant, Γ is the Gaussian line width and erfc is the complement error integral.
  3. Maxwell distributions of P are equivalent to the rate law 〈Q〉∝e?kt .
  4. Pseudo spin glasses possess a logarithmic rate law 〈Q〉∝lnt.
  5. Power laws with P(x)=x a lead to a rate law: ln〈Q〉=-(α + 1) ln t.
The power spectra of Q are shown for Gaussian distributions and pseudo spin glasses. The mechanism of kinetic gradient coupling between two order parameters is evaluated.  相似文献   

15.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

16.
Dissociated dislocations have been observed for the first time by transmission electron microscopy in the perovskite-structure compound CaGeO3. Dislocations with Burgers vectors \(\left[ {1\bar 10} \right]\) and [001] (in pseudo-cubic index) are dissociated into collinear partials on the (110) plane: $$\left[ {1\bar 10} \right] = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right] + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right]$$ and [001] = 1/2[001] + 1/2[001]. The partials react to form octagonal extended nodes. The stacking fault ribbons with displacement vector \(\left[ {1\bar 10} \right]\) have a width of 350 A, which corresponds to a stacking fault energy of 35 erg/cm2 (or mJ/m2).  相似文献   

17.
A multisite solid solution of the type (A, B) (X, Y) has the four possible components AX, AY, BX, BY. Taking the standard state to be the pure phase at the pressure and temperature of interest, the mixing of these components is shown not to be ideal unless the condition: $$\Delta G^0 = (\mu _{AX}^0 + \mu _{BY}^0 - \mu _{AY}^0 - \mu _{BX}^0 = 0$$ applies. Even for the case in which mixing on each of the individual sublattices is ideal, ΔG 0 contributes terms of the following form to the activity coefficients of the constituent components: $$RT\ln \gamma _{AX} = - X_{B_1 } X_{Y_2 } \Delta G^0$$ (X Ji refers to the atomic fraction of J on sublattice i). The above equation, which assumes complete disorder on (A, B) sites and on (X, Y) sites is extended to the general n-component case. Methods of combining the “cross-site” or reciprocal terms with non-ideal terms for each of the individual sites are also described. The reciprocal terms appear to be significant in many geologically important solid solutions, and clinopyroxene, garnet and spinel solid solutions are all used as examples. Finally, it is shown that the assumption of complete disorder only applies under the condition: $$\Delta G^0 \ll zn_1 RT$$ where z is the number of nearest-neighbour (X, Y) sites around A and n 1 is the number of (A, B) sites in the formula unit. If ΔG 0 is relatively large, then substantial short range oder must occur and the activity coefficient is given by (ignoring individual site terms): $$\gamma _{AX} = \left( {\frac{{1 - X'_{Y_2 } }}{{1 - X_{Y_2 } }}} \right)^{zn_1 }$$ where XY2 is the equilibrium atomic fraction of Y atoms surrounding A atoms in the structure. The ordered model may be developed for multicomponent solutions and individual site interactions added, but numerical methods are needed to solve the simultaneous equations involved.  相似文献   

18.
On formation of a bed and distribution of bed thickness, A. N. Kolmogorov presented a mathematical explanation that if repetitive alternations of material accumulation and erosion form a sequence of beds, the resultant bed-thickness distribution curve takes a shape truncated by the ordinate at zero thickness. In this truncated distribution curve, its continuation and extension from positive to negative thickness represents the distribution of beds with negative thickness, that is, the depth of erosion. When a distribution curve, including both positive and negative parts, is expressed by a function f(x),the ratio \(\int_0^\infty {f(x)dx to} \int_{ - \infty }^\infty {f(x)dx} \) ,called Kolmogorov's coefficient and designated as p,is a parameter representing the degree of accumulation in the depositional environment. On the assumption that f(x)is described by the Gaussian distribution function, the coefficient pfor Permian and Pliocene sequences in central Japan was calculated. The coefficients also were obtained from published data for different types of sediments from other areas. It was determined that they are more or less different depending on their depositional environments. The calculated results are summarized as follows: $$\begin{gathered} p = 0.80 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ p = 0.65 - 0.95for{\text{ }}nearshore{\text{ }}sediments \hfill \\ p = 0.55 - 0.95for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ p = 0.90 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ In addition, a ratio \(q = \int_0^\infty {xf(x)dx/} \int_{ - \infty }^\infty {|x|f(x)dx} \) ,called Kolmogorov's ratio in this paper, is introduced for estimating a degree of total thickness actually observed in the field relative to total thickness once present in a basin. The calculated results of Kolmogorov's ratio are as follows: $$\begin{gathered} q = 0.88 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ q = 0.68 - 0.98for{\text{ }}nearshore{\text{ }}sediments \hfill \\ q = 0.55 - 0.96for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ q = 0.92 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ The sedimentological significance of these values is discussed.  相似文献   

19.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

20.
Hard mode Raman spectroscopy (HMRS) on hypersolvus alkali feldspar shows a temperature dependence of the order parameter of the displacive \({{C2} \mathord{\left/ {\vphantom {{C2} {m{\text{ - }}C\bar 1}}} \right. \kern-0em} {m{\text{ - }}C\bar 1}}\) phase transition following mean-field behaviour: $$Q \sim \sqrt {T_c - T;} 300 {\text{K}} \lesssim T< T_c $$ At lower temperatures, a spontaneous saturation sets in, which is attributed to site-ordering effects of the alkali atoms even in hypersolvus anorthoclase. Fluctuational line broadening of Si-O viration bands is explained by strong lattice distortions around alkali positions and local deformation of the Al,Si,O network. The thermodynamic relevance of these distortions is discussed in relation to the possibility of an additional diffuse phase transition occurring atT d =302 K. The experimental results of HMRS are compared with those on Al,Si ordered and disordered albite, where no fluctuation broadening occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号