首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tectonic school of the Geological Institute, Russian Academy of Sciences (GIN RAS), was created in the second half of the 1930s. Its founders were Academicians A.D. Arkhangel’sky and N.S. Shatsky. Three periods are distinguished in the history of the tectonic school. The first period lasted until the 1960s and was based on the geosyncline theory. The Tectonic Map of the USSR and Adjacent Territories (1956) was the acme of the scientific creative activity of this period. The second period corresponded to the 1960s and was characterized by transition to the mobilistic theory. The third period is characterized by the mobilistic theory itself. The concept of tectonic delamination of the lithosphere, which is widely claimed by geological mapping, is a great achievement of this period, which continues to the present day. The concept of involvement of the entire Earth’s mantle down to its core in the tectonosphere is developing currently. The final conclusion is that the work of the tectonic school of the GIN RAS continues in the areas of both regional and general tectonics.  相似文献   

2.
2008年5月12日汶川8.0级地震发生后,笔者在总结前人研究成果的基础上,结合野外实地考察,对龙门山演化历史和构造样式等方面进行了综述。研究表明,龙门山构造带经历了基底形成期、扬子地台裂解期、构造反转-褶皱隆升期和推覆滑覆叠加期四个演化阶段,同时具有东西分带、南北分段、上下分层的构造变形特点,发育大量的构造样式,如叠瓦冲断带、花状构造、背冲断层、断滑褶皱等,并且具有推覆滑覆多期叠加的特征。该研究有利于推动对造山带构造演化规律的研究,同时对汶川地震发震构造环境和青藏高原边缘动力学环境研究有着重要的意义。  相似文献   

3.
概述了马杏垣院士的学术生平与创建开合构造史实.开合构造提出是中国地球科学"百花齐放,百家争鸣"发展的结果;是黄汲清院士、张文佑院士、马杏垣院士领导的青年团队,在国际板块构造革命的新潮中,根据板块构造登陆存在的巨大问题,结合中国地质构造的特色,依据坚实的实际资料进行深入的全新探索.3位院士领导的团队又联合起来,进行开合构造的长期研究.2002年在构造地质专业委员会支持下,成立了开合构造研究组,召开了开合构造第一次学术研讨会,总结20多年研究成果,出了专刊书集.2015年研究组聚首北京,总结开合构造研究的新成果,并吸取地球物理研究新成果,准确地阐明开合构造的定义,提升了研究方法,总结了开合构造运动和开合构造体系特征,将构造动力来源初始点建立在古登堡面的开合构造转换带上,全新解析了转换带的重要作用,站在星球角度认识开合构造.最后,强调青年研究力量的培养,是开合构造走向世界的重要途径.  相似文献   

4.
青海玉树地区的扎喜科石英闪长岩体出露于西金乌兰-金沙江缝合带西段。地球化学特征表明,岩石的轻稀土富集,(La/Yb)N为2.56~4.37,Eu负异常,富集大离子亲石元素,亏损高场强元素,K*在4.18~4.89范围内,RbN/YbN比值范围在9.77~12.09间,这些特点均显示了岛弧岩浆岩的特征;运用Maniar主量元素判别法判定其为IAG型花岗岩(造山型花岗岩类),形成于板块俯冲阶段,在Pearce的构造判别图上也得到了很好的验证。通过对其进行角闪石40Ar/39Ar测年得到(222.3±1.7)Ma的年龄数据,代表其侵位时代,是印支期岩浆活动的产物。结合岩体的岩石学、岩石地球化学特征以及年代学研究结果可以初步确定,至晚三叠世,即约222Ma,西金乌兰-金沙江缝合带在沿扎喜科岩体处仍处于岛弧环境,板块俯冲作用仍在继续。这一结果对古特提斯末期的演化历史给予了岩石学和年代学的限制。  相似文献   

5.
通过野外节理的测量统计,得出研究区有3组节理发育:NNW向(320°~350°)、NNE向(15°~30°)、NE向(50°~70°)。结合区域构造背景,运用赤平投影法分析了三泉地区中新生代以来的古构造应力场。根据各节理测量点的最大主应力方向,把研究区构造演化分为两个阶段:第一阶段为晚燕山期—早喜山期,主要受到NW-SE方向的应力作用;第二阶段是晚喜山期,主要受到NE—SW方向的应力作用。这两期的构造运动控制了三泉地区龙马溪组页岩中裂缝的发育方向,为页岩气储层物性的研究提供了一定的地质依据。  相似文献   

6.
This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred between Devonian and late Permian.  相似文献   

7.
屈涛  伊其安 《新疆地质》2019,(3):289-295
提肯乃克特额尔齐斯构造混杂带岩块(片)由变质玄武岩及变质辉绿岩、斜长花岗岩等深成杂岩组成,可能代表了北准噶尔有限洋盆的洋壳残片,基质主要为一套浅变质细碎屑岩,上覆岩石主要由硅质岩、变质粉砂岩等远洋沉积物组成。早泥盆世,准噶尔微板块东北缘及西伯利亚板块南缘因大陆硅铝壳开始破裂、扩张,在额尔齐斯断裂南北两侧分别出现拉张活动。中泥盆世,哈萨克斯坦-准噶尔板块向山区阿尔泰地块俯冲并逐渐闭合成陆。早石炭世初期,准噶尔微型板块北缘再次沿额尔齐斯断裂带南侧发生拉张、裂陷,逐渐演变成活动大陆边缘并发育基性杂岩体。早石炭世晚期,地壳由扩张转为挤压,准噶尔微板块与阿尔泰地块再次发生碰撞,伴随这次板块碰撞活动,其上覆上迭火山-沉积盆地闭合成陆。提肯乃克特额尔齐斯构造混杂岩带的识别,对于重新认识准噶尔地块和阿尔泰地块之间的关系及探讨中亚造山带古生代以来的构造演化具较大意义。  相似文献   

8.
Likhanov  I. I.  Reverdatto  V. V.  Savko  K. A. 《Doklady Earth Sciences》2017,476(2):1217-1221
Doklady Earth Sciences - The petrological–geochemical and isotopic–geochronological studies of contrasting rocks of the Yenisei Regional Tectonic Zone of the Yenisei Ridge allowed...  相似文献   

9.
矿物微量元素组成用于火成岩构造背景判别   总被引:1,自引:0,他引:1  
火成岩中的矿物,特别是稳定副矿物的微量元素组成可用于火成岩构造–岩浆背景的判别。产于不同构造背景火成岩中单颗粒锆石原位微量元素含量的准确测定,积累了大量资料。本文介绍了用锆石微量元素含量的二维核密度分布投影,构建了U/Yb-Nb/Yb、Sc/Yb-Nb/Yb和U/Yb-Sc/Yb构造背景判别图解,可以区分洋中脊、地幔柱影响的洋岛及俯冲有关的弧(大陆弧)等不同构造背景形成的火成岩。单斜辉石、尖晶石、黑云母和角闪石的微量元素或主量元素组成同样可用于构造背景识别。  相似文献   

10.
新疆阿拉套山花岗岩带的主要特征及形成构造环境   总被引:2,自引:0,他引:2  
周泰禧  陈江峰 《岩石学报》1995,11(4):386-396
阿拉套山花岗岩带产出于巩乃斯板块东北缘,岩带的岩石组合、化学成分、同位素组成表现出由东北向西南的系统变化,随离俯冲带距离的增大,古老地壳物质的贡献愈显著。构造环境判别表明早期花岗闪长岩-二长花岗岩组合产出于岩浆弧环境,与消减作用直接有关,晚期二长花岗岩-碱长花岗岩组合为造山后花岗岩,产出于张性环境,其形成标志着造山作用的结束。  相似文献   

11.
Metallogenic Effect of Transition of Tectonic Dynamic System   总被引:13,自引:0,他引:13  
Tectonic dynmnic system transition, one of the main factors in metallngenesis, controls metallogenic fluid movement and ore body location in orefields and on an ore deposit scale (mainly in the continental tectonic setting), and even the formation and distribution of large-scale deposit clusters. Tectonic dynamic system transition can be classified as the spacious difference of the tectonic dynamic system in various geological units and the temporal alteration of different tectonic dynamic systems. The former results in outburst of mineralization, while the latter leads to the metallogenic diversity. Both of them are the main contents of metallogenic effect of tectonic dynamic system transition, that is, the alteration of dynamic system, the occurrence of mineralization, and the difference of regional tectonic dynamic system and metallogenic diversity. Generally speaking, the coupling of spatial difference of tectonic dynamic system and its successive alternation controlled the tempo-spatial evolution regularity of mineralization on a larger scale. In addition, the analysis of mineralization factors and processes of typical ore deposits proved that the changes of tectonic stress field, the direct appearance of tectonic dynamic system transition, way lead to the accident of mineralization physical-chemical field and the corresponding accidental interfaces were always located at ore bodies.  相似文献   

12.
通过对北大港构造带东翼对油气运聚影响较大的华北期(52~23.5 Ma)进行应力场模拟,结果表明,华北期构造运动的最大主压应力方向为近ESE向。华北期构造运动在北大港构造带东翼的构造剪应力值分布在18~42 MPa,大多分布在22~32 MPa,而在22~25 MPa间有较明显的梯度带,塑性变形后应力释放处,为构造裂缝发育区带。构造裂缝发育区NEE向的断层与华北期构造应力方向之间的夹角较小,开启性较好,有可能成为油气运移和聚集部位,但是也有可能成为油气散失的部位。结合现今构造应力场的模拟结果,综合分析认为构造剪应力值在22~25 MPa的构造发育区带内的ESE向的裂缝发育区带可能形成较好的油气藏,而ENE向的裂缝发育带则易成为现代油气散失的部位。  相似文献   

13.
南北构造带北部香山地区中-新生代构造抬升事件   总被引:3,自引:2,他引:1  
南北构造带北部位于鄂尔多斯地块和阿拉善地块,秦祁褶皱造山带和兴蒙褶皱带四大构造单元的结合交汇部位,演化历史复杂。本文以南北构造带北部香山地区为研究对象,探讨该区中-新生代的隆升过程和阶段。对采自香山地区的9件样品分别进行了锆石、磷灰石裂变径迹测年及热历史模拟分析。香山地区的裂变径迹年龄主要分布在4个区间,对应地质时代分别为晚三叠世末-早侏罗世、晚侏罗世末-早白垩世初、晚白垩世和始新世,反映出香山地区在这4个时期内发生了明显的冷却事件。而这4期冷却抬升事件与区域构造背景及野外地质特征均有很好的响应关系。同时热历史模拟表明,香山地区晚白垩世以来整体上经历了2期快速隆升事件,其中始新世的快速隆升主要是该区对鄂尔多斯地块新生代周缘裂陷解体事件的响应。值得注意的是,香山地区并未反映出8Ma左右的快速隆升,说明青藏高原隆升对该区的影响是较为有限的。  相似文献   

14.
This paper reviews recent progress on the geotectonic evolution of exotic Paleozoic terranes in Southwest Japan, namely the Paleo-Ryoke and Kurosegawa terranes. The Paleo-Ryoke Terrane is composed mainly of Permian granitic rocks with hornfels, mid-Cretaceous high-grade metamorphic rocks associated with granitic rocks, and Upper Cretaceous sedimentary cover. They form nappe structures on the Sambagawa metamorphic rocks. The Permian granitic rocks are correlative with granitic clasts in Permian conglomerates in the South Kitakami Terrane, whereas the mid-Cretaceous rocks are correlative with those in the Abukuma Terrane. This correlation suggests that the elements of Northeast Japan to the northeast of the Tanakura Tectonic Line were connected in between the paired metamorphic belt along the Median Tectonic Line, Southwest Japan. The Kurosegawa Terrane is composed of various Paleozoic rocks with serpentinite and occurs as disrupted bodies bounded by faults in the middle part of the Jurassic Chichibu Terrane accretionary complex. It is correlated with the South Kitakami Terrane in Northeast Japan. The constituents of both terranes are considered to have been originally distributed more closely and overlay the Jurassic accretionary terrane as nappes. The current sporadic occurrence of these terranes can possibly be attributed to the difference in erosion level and later stage depression or transtension along strike-slip faults. The constituents of both exotic terranes, especially the Ordovician granite in the Kurosegawa-South Kitakami Terrane and the Permian granite in the Paleo-Ryoke Terrane provide a significant key to reconstructing these exotic terranes by correlating them with Paleozoic granitoids in the eastern Asia continent.  相似文献   

15.
After the Variscan Cycle, the global tectonic framework underwent three major adjustments. The first occurred in the Late Triassic-initial Jurassic, the second in the Late Jurassic-early Early Cretaceous and the third in the Late Cretaceous-Eogene. On that basis, the post-Variscan tectonic history is divided into three tectonic cycles——the Indosinian, Yanshanian and Himalayan Cycles. The post-Neocom(k_1~1) andpre-Aptian(k_1~2) tectonic movement marks the end of the Yanshanian orogeny in eastern China and the initiation of the subduction of the Tethyan ocean in western China and represents the boundary between the Yanshanian and Himalayan Tectonic Cycles.  相似文献   

16.
17.
18.
19.
基于Web of Knowledge平台SCI-E数据库,对2009—2014年中国科学院SCI论文及资源环境与地球科学领域论文产出进行统计,并与全球及中国论文产出相比较,了解中国科学院在资源环境科学领域的研究产出及其发展状况。分析结果显示,近年来中国科学院在资源环境科学领域尤其是古生物学方向取得了比较突出的成绩。中国科学院的地理科学与资源研究所、遥感与数字地球研究所、城市环境研究所等论文产出快速增长,生态环境研究中心、地质与地球物理研究所、广州地球化学研究所等科学贡献表现突出。  相似文献   

20.
The western margin of Myanmar is the northern extension the active Sunda (India-Eurasia) subduction zone. Coastal regions and offshore islands have remarkable exposures of chaotic rock terranes along wave-cut terraces that allow characteristics of tectonic, sedimentary and diapiric mélanges to be recognized. Tectonic shear zones (tectonic mélanges) contain fragments of Cretaceous ophiolites (chrome-spinel-bearing peridotites and radiolarian cherts) that are in contact with thrust packets of Eocene turbidite units (broken formations). The turbidites contain shale-rich beds that have been sheared during soft-sediment deformation (sedimentary broken formations) and are sandwiched between undeformed thick sandy beds. These are mass transport deposits (MTDs) that most likely formed during deposition of the initial detritus of the Himalayan orogenic zone, probably trench slope basins on the accretionary prism. The ophiolitic and turbiditic thrust slices have been exhumed and are currently being intruded by active mud volcanoes that bring fragments of units up from depth to the surface, forming diapiric mélanges. These diapiric mélange bodies contain only small fragments (<50 cm) that are randomly oriented and do not exhibit shear fabrics. Because the region lacks superimposed deformation characteristic of most orogenic belts, the origins of all three rock bodies can easily be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号