首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a simple model for computing planetary formation based on the core instability model for the gas accretion and the oligarchic growth regime for the accretion of the solid core. In this model several planets can form simultaneously in the disc, a fact that has important implications especially for the changes in the dynamic of the planetesimals and the growth of the cores since we consider the collision between them as a source of potential growth. The type I and type II migration of the embryos and the migration of the planetesimals due to the interaction with the disc of gas are also taken into account. With this model we consider different initial conditions to generate a variety of planetary systems and analyse them statistically. We explore the effects of using different type I migration rates on the final number of planets formed per planetary system such as on the distribution of masses and semimajor axis of extrasolar planets, where we also analyse the implications of considering different gas accretion rates. A particularly interesting result is the generation of a larger population of habitable planets when the gas accretion rate and type I migration are slower.  相似文献   

2.
The fragmentation process in collapsing clouds with various metallicities is studied using three-dimensional nested-grid hydrodynamics. Initial clouds are specified by three parameters: cloud metallicity, initial rotation energy and initial cloud shape. For different combinations of these parameters, we calculate 480 models in total and study cloud evolution, fragmentation conditions, orbital separation and binary frequency. For the cloud to fragment during collapse, the initial angular momentum must be higher than a threshold value, which decreases with decreasing metallicity. Although the exact fragmentation conditions depend also on the initial cloud shape, this dependence is only modest. Our results indicate a higher binary frequency in lower metallicity gas. In particular, with the same median rotation parameter as in the solar neighbourhood, a majority of stars are born as members of binary/multiple systems for  <10−4 Z  . With initial mass  <0.1 M  , if fragments are ejected in embryo from the host clouds by multibody interaction, they evolve to substellar-mass objects. This provides a formation channel for low-mass stars in zero- or low-metallicity environments.  相似文献   

3.
Here we show preliminary calculations of the cooling and contraction of a 2 MJ planet. These calculations, which are being extended to 1–10 MJ, differ from other published “cooling tracks” in that they include a core accretion‐gas capture formation scenario, the leading theory for the formation of gas giant planets.We find that the initial post‐accretionary intrinsic luminosity of the planet is ∼3 times less than previously published models which use arbitrary initial conditions. These differences last a few tens of millions of years. Young giant planets are intrinsically fainter than has been previously appreciated. We also discuss how uncertainties in atmospheric chemistry and the duration of the formation time of giant planets lead to challenges in deriving planetary physical properties from comparison with tabulated model values. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The notion of Hill stability is extended from the circular restricted 3-body problem to the general three-body problem; it is even extended to systems of positive energy and the Hill's curves with their corresponding forbidden zones are generalized.Hill stable systems of negative energy present a hierarchy: they have a close binary that can be neither approached nor disrupted by the third body. This phenomenon becomes particularly clear with the distance curves presentation.The three limiting cases, restricted, planetary and lunar are analysed as well as some real stellar cases.  相似文献   

5.
It is shown that the cuspy density distributions observed in the cores of elliptical galaxies can be realized by dissipationless gravitational collapse. The initial models consist of power-law density spheres such as ρ ∝ r −1 with anisotropic velocity dispersions. Collapse simulations are carried out by integrating the collisionless Boltzmann equation directly, on the assumption of spherical symmetry. From the results obtained, the extent of constant density cores, formed through violent relaxation, decreases as the velocity anisotropy increases radially, and practically disappears for extremely radially anisotropic models. As a result, the relaxed density distributions become more cuspy with increasing radial velocity anisotropy. It is thus concluded that the velocity anisotropy could be a key ingredient for the formation of density cusps in a dissipationless collapse picture. The velocity dispersions increase with radius in the cores according to the nearly power-law density distributions. The power-law index, n , of the density profiles, defined as ρ ∝ r − n , changes from n ≈2.1 at intermediate radii to a shallower power than n ≈2.1 toward the centre. This density bend can be explained from our postulated local phase-space constraint that the phase-space density accessible to the relaxed state is determined at each radius by the maximum phase-space density of the initial state.  相似文献   

6.
The Gliese 876 planetary system consists of two Jupiter-like planets having a nearly commensurate 2:1 orbital periods ratio. Because the semimajor axes of the planets are very small (of the order 0.1 au and 0.2 au, respectively), and the eccentricity of the inner companion is ≃0.3, the mutual perturbations are extremely large. However, many authors claim the long-term orbital stability of the system, at least over 500 Myr for initial conditions found by Rivera & Lissauer. Results of investigations of a migration of initially separated planets into the close 2:1 mean motion resonance lock from Lee & Peale also support the conclusion that the system should be stable for the lifetime of the parent star. Initial conditions of the system, found from non-linear N -body fits by Laughlin & Chambers and Rivera & Lissauer, to the radial velocity curve, formally allow for a variety of orbital configurations of the GJ 876 system, e.g. coplanar, with planetary inclinations in the range [≃30°, 90°], and with relative inclinations of orbital planes as high as 80°. Our work is devoted to the stability investigation of the systems originating from the fitted initial conditions. We study neighbourhoods of these initial states in the orbital parameter space. We found estimations of the 2:1 mean motion resonance width and dynamical limitations on the planetary masses. We also obtain a global representation of the domains of the orbital parameters space in which initial conditions leading to stable evolutions can be found. Our results can be useful in localization of the best, stable fits to the observational data. In our investigations we use the MEGNO technique (the Mean Exponential Growth factor of Nearby Orbits) invented by Cincotta & Simó. It allows us to distinguish efficiently and precisely between chaotic and regular behaviour of a planetary system.  相似文献   

7.
Application of low thrust propulsion to interconnect ballistic trajectories on invariant manifolds associated with multiple circular restricted three body systems has been investigated. Sun-planet three body models have been coupled to compute the two ballistic trajectories, where electric propulsion is used to interconnect these trajectories as no direct intersection in the Poincarè sections exists. The ability of a low thrust to provide the energy change required to transit the spacecraft between two systems has been assessed for some Earth to Mars transfers. The approach followed consists in a planetary escape on the unstable manifold starting from a periodic orbit around one of the two collinear libration points near the secondary body. Following the planetary escape and the subsequent coasting phase, the electric thruster is activated and executes an ad-hoc thrusting phase. The complete transfer design, composed of the three discussed phases, and possible applications to Earth–Mars missions is developed where the results are outlined in this paper.  相似文献   

8.
We analyse the phase-space structure of simulated thick discs that are the result of a 5:1 mass-ratio merger between a disc galaxy and a satellite. Our main goal is to establish what would be the imprints of a merger origin for the Galactic thick disc. We find that the spatial distribution predicted for thick-disc stars is asymmetric, seemingly in agreement with recent observations of the Milky Way thick disc. Near the Sun, the accreted stars are expected to rotate more slowly, to have broad velocity distributions and to occupy preferentially the wings of the line-of-sight velocity distributions. The majority of the stars in our model thick discs have low eccentricity orbits (in clear reference to the pre-existing heated disc) which give rise to a characteristic (sinusoidal) pattern for their line-of-sight velocities as a function of galactic longitude. The z -component of the angular momentum of thick-disc stars provides a clear discriminant between stars from the pre-existing disc and those from the satellite, particularly at large radii. These results are robust against the particular choices of initial conditions made in our simulations.  相似文献   

9.
Atmospheric escape is an important sector in the evolution of planetary atmosphere, and its energy is mainly originated from the radiation of the host star at the high energy band. The radiation flux drops dramatically with the increase of orbital distance, there is a large difference of planetary atmospheric escape in different orbits, so it is necessary to study the impact of orbital distance on the atmospheric escape of an exoplanet. We consider the radiation transfer and the photochemical reactions of multiple kinds of particles to study the variation of planetary atmospheric escape with the orbital distance by using a 1-D hydrodynamic model. Due to the large differences of the spectra of host stars in different evolution stages, the Astrophysical Plasma Emission Code (APEC) in the X-Ray Spectral Fitting Package (XSPEC) is used to obtain the spectra of solar-type stars with different ages as the input spectra of the model. The results indicate that the escape rates of the exoplanets in different orbits are different significantly, and the escape mechanism is converted from the drastic hydrodynamic escape into the moderate Jeans escape as the orbital distance increases, the smaller the planetary gravitational potential, the younger the star-planet system, the larger the distance of this conversion. The correlation between the escape rate and the radiation flux decreases for the short-period exoplanets in a younger star-planet system. It is shown that the classical energy-limited escape theory is not suitable for this kind of exoplanets. These results have enriched the studies on the atmospheric escape of exoplanets, especially, extended the studies on the escape mechanism and energy conversion under different orbital distances and stellar ages.  相似文献   

10.
We study the stability of charged dust grains orbiting a planet and subject to gravity and the electromagnetic force. Our numerical models cover a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks. Treating the spinning planetary magnetic field as an aligned dipole, we map regions of radial and vertical instability where dust grains are driven to escape or crash into the planet. We derive the boundaries between stable and unstable trajectories analytically, and apply our models to Jupiter, Saturn and the Earth, whose magnetic fields are reasonably well represented by aligned dipoles.  相似文献   

11.
A new exact method for line radiative transfer   总被引:1,自引:0,他引:1  
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations , and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the 'effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins.
The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the C  ii 158-μm line but not by the 3P lines of O  i .  相似文献   

12.
We explore the cross section of giant planet envelopes at capturing planetesimals of different sizes. For this purpose we employ two sets of realistic planetary envelope models (computed assuming for the protoplanetary nebula masses of 10 and 5 times the mass of the minimum mass solar nebula), account for drag and ablation effects and study the trajectories along which planetesimals move. The core accretion of these models has been computed in the oligarchic growth regime [Fortier, A., Benvenuto, O.G., Brunini, A., 2007. Astron. Astrophys. 473, 311-322], which has also been considered for the velocities of the incoming planetesimals. This regime predicts velocities larger that those used in previous studies of this problem. As the rate of ablation is dependent on the third power of velocity, ablation is more important in the oligarchic growth regime. We compute energy and mass deposition, fractional ablated masses and the total cross section of planets for a wide range of values of the critical parameter of ablation. In computing the total cross section of the planet we have included the contributions due to mass deposited by planetesimals moving along unbound orbits. Our results indicate that, for the case of small planetary cores and low velocities for the incoming planetesimals, ablation has a negligible impact on the capture cross section in agreement with the results presented in Inaba and Ikoma [Inaba, S., Ikoma, M., 2003. Astron. Astrophys. 410, 711-723]. However for the case of larger cores and high velocities of the incoming planetesimals as predicted by the oligarchic growth regime, we find that ablation is important in determining the planetary cross section, being several times larger than the value corresponding ignoring ablation. This is so regardless of the size of the incoming planetesimals.  相似文献   

13.
In this paper we present numerical results on the decay of small stellar systems under different initial conditions (multiplicity 3 ≤  N  ≤ 10, and various mass spectra, initial velocities and initial configurations). The numerical treatment uses the CHAIN1 code (Mikkola &38; Aarseth). Particular attention is paid to the distribution of high-velocity escapers: we define these as stars with velocity above 30 km s−1. These numerical experiments confirm that small N -body systems are dynamically unstable and produce cascades of escapers in the process of their decay. It is shown that the fraction of stars that escape from small dense stellar systems with an escape velocity greater than 30 km s−1 is ∼1 per cent for all systems treated here. This relatively small fraction must be considered in relation to the rate of star formation in the Galaxy in small groups: this could explain some moderately high-velocity stars observed in the Galactic disc and possibly some young stars with relatively high metallicity in the thick disc.  相似文献   

14.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

15.
This paper discusses the possibility of constructing time-independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self-consistent equilibrium can be constructed from any set of time-independent phase-space building blocks which, when combined, generate the mass distribution associated with an assumed time-independent potential. This approach provides a way to justify Schwarzschild's method for the numerical construction of self-consistent equilibria with arbitrary time-independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild's method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non-integrable potential.  相似文献   

16.
The Lagrangian equilateral points of a planetary orbit are points of equilibrium that trail at 60°, ahead (L4) or behind (L5), the trajectory of a planet. Jupiter is the only major planet in our Solar system harbouring a known population of asteroids at those locations. Here we report the existence of orbits close to the Lagrangian points of Saturn, stable at time-scales comparable to the age of the Solar system. By scaling with respect to the Trojan population we have estimated the number of objects that would populate the regions, which gives a significant figure. Moreover, mutual physical collisions over the age of the Solar system would be very rare, so the evaporation rate of this swarm arising from mutual interactions would be very low. A population of asteroids not self-collisionally evolved after their formation stage would be the first to be observed in our planetary system. Our present estimations are based on the assumption that the capture efficiency at Saturn's equilateral points is comparable with the one corresponding to Jupiter, thus our figures may be taken as upper limits. In any case, observational constraints on their number would provide fundamental clues to our understanding of the history of the outer Solar system. If they existed, the surface properties and size distribution of those objects would represent unusually valuable fossil records of our early planetary system.  相似文献   

17.
Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely in order to constrain the size of the planet's core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765-766]. Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] if we integrate the system with a set of initial conditions that differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury's obliquity will remain quasi-constant, suggesting that one of the important conditions for the success of Peale's experiment is realized. We show that interpretation of data obtained in support of this experiment will require a precise knowledge of the spin-orbit configuration, and we provide estimates for two of the critical parameters, the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration subject to planetary perturbations.  相似文献   

18.
We investigate how the formation and evolution of extrasolar planetary systems can be affected by stellar encounters that occur in the crowded conditions of a stellar cluster. Using plausible estimates of cluster evolution, we show how planet formation may be suppressed in globular clusters while planets wider than ≳0.1 au that do form in such environments can be ejected from their stellar system. Less crowded systems such as open clusters have a much reduced effect on any planetary system. Planet formation is unaffected in open clusters and only the wider planetary systems will be disrupted during the cluster's lifetime. The potential for free-floating planets in these environments is also discussed.  相似文献   

19.
Hidenori Genda  Yutaka Abe 《Icarus》2003,164(1):149-162
When a giant impact occurs, atmosphere loss may occur due to global ground motion excited by a strong shock wave traveling in the planetary interior. Here, the relations between the ground motion and the amount of the lost atmosphere are systematically investigated through calculations of a spherically one-dimensional atmospheric motion for various initial atmospheric conditions. The fraction of the lost atmosphere to the total mass of the atmosphere is found to be controlled only by the ground velocity and, insensitive to the initial atmospheric conditions. Unlike the previous studies (Ahrens, 1990, Origin of the Earth, H.E. Newson, J.H. Jones (Eds.), pp. 211-227; Ahrens, 1993, Annu. Rev. Earth Planet. Sci. 21, 525-555; Chen and Ahrens, 1997, Phys. Earth Planet. Inter. 100, 21-26); the estimated loss fraction for the giant impact is only 20%. Significant escape occurs only when the ground velocity is close to the escape velocity. Thus, most of the atmosphere should survive the giant impact. The cause of the difference from previous estimates is discussed from energetic and dynamic points of view. Moreover, if our estimates are applied to the atmosphere of the impactor planet, a significant fraction of it is carried to the target planet. Survival of the proto-atmosphere has very important effects on the origin and evolution of the terrestrial planets' volatile budget.  相似文献   

20.
When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may, in principle, be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depend on the initial conditions, for the one-parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as   N 1/3  , a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the   N  →∞  limit) is assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to   N 1/3  , while the fraction of the initial mass ejected grows only very slowly with N , approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time-dependent potential of an already re-expanding central core. Using modified initial configurations, we explore the importance of fluctuations at different scales and discreteness (i.e. non-Vlasov) effects in the dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号