首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Introduction Hexigten is situated at the eastern part of the Inner Mongolian Plateau, south of the Da Hinggan Mountains and northwest of Chifeng City, Inner Mongolia, China. It is also at the junction of the Da Hinggan Mountians, Inner Mongolian Plateau and Yanshan Mountains. It is about 650 km north of Beijing. The geographic coordinates are 116?30'?118?20'E and 42?20'?44?10'N (Fig. 1). The elevation range is from 1100 m to 1700 m, and the highest peak (2029 m) of the Da Hinggan…  相似文献   

2.
3.
The Huanghuachang section near Yichang, southern China meets the requirements of Global Stratotype Section and Point (GSSP) for the base of the Middle Ordovician Series and the yet-to-be-named third stage of the Ordovician System (or lower stage of Middle Ordovician Series). The conodont succession at the section is complete across the Lower to Middle Ordovician series boundary and several excellent phylogenetic lineages of Baltoniodus, Trapezognathus, Periodon, and Microzarkodina are represented. The definition of the base of the Middle Ordovician is proposed to be the first appearance datum (FAD) of Baltoniodus? triangularis in the section. It is followed closely by the FAD of Microzarkodina flabellum, which is taken as a reasonable proxy for the boundary. This level approximates the boundary between the lower and upper intervals of the Azygograptus suecicus graptolite Biozone, and nearly coincides with the base of the Belonechitina henryi chitinozoan Biozone.The proposed GSSP for the base of the international Middle Ordovician Series is located in a roadside exposure at the base of Bed (SHod) 16, 10.57 m above the base of the Dawan Formation in the measured Huanghuachang section near Yichang City, southern China. The same faunal succession is also recorded from the Chenjiahe (formerly Daping) section, 5 km to the north of the Huanghuachang section. The proposed boundary horizon can be recognized and correlated globally with high precision in both relatively shallow-water carbonate facies as well as in deep-water graptolite facies.  相似文献   

4.
5.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

6.
7.
8.
9.
INTRODUCTIONCali microbialites near the Permian-Triassicboundary are a special sedi mentary framework whichis formed on the top of reefs or isolated carbonateplatforms after the end-Permian extinction. Cali mi-crobialite in South China was first found by Lehr-mann (1999) in Bianyang, Guizhou. Al most si multa-neously , Kershawet al .(1999) reported cali microbi-alites in East Sichuan. Discovery of Permian-Triassiccali microbialites in South China has attracted muchattention. Based o…  相似文献   

10.
The Zargat Na’ am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W, and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills. The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations (1.5 wt% Zr, 0.25 wt% Nb, 0.6 wt% Σ REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartzhosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750 ¢ 10−6), Zr (2500 × 10−6) and REEs (1450 × 10−6). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.  相似文献   

11.
Following the recommendation of the International Commission on Stratigraphy (16 votes Yes [94%], 1 abstention, 2 votes not received), the Global boundary Stratotype Section and Point (GSSP) for the base of the Turonian Stage of the Cretaceous System is defined as the base of bed 86 of the Bridge Creek Limestone Member of the Greenhorn Limestone Formation at the western end of the Denver and Rio Grande Railroad cut near the north boundary of the Pueblo Reservoir State Park Recreation Area, west of Pueblo, Colorado, USA. This GSSP horizon is also exposed and protected in the adjacent state recreation area. It coincides with the first occurrence of the ammonite Watinoceras devonense, is in the middle of a global positive excursion in Carbon-13 isotopes, and is bracketed by widespread bentonites that have yield edages of 93 to 93.5 Ma.  相似文献   

12.
Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.  相似文献   

13.
INTRODUCTIONYingen-Ejinaqi basinis locatedin the WulatehouBanner in the west of the Inner Mongolia Autono-mous Region of China ,and covers an area of approxi-mately 122 000 km2( Chen et al ., 2001) . As aMesozoic-Cenozoic depression in Yingen-Ejinaqi ba-sin,the Chagan depression lies in the northeast ofthis basin (Fig.1) .It is about 60 kmlong and 34 kmwide and covers an area of approxi mately 2 000 km2( Wang et al .,2002) .In terms of the basement ter-rain,forms of major structural…  相似文献   

14.
From Donghai County of Jiangsu Province to Rongcheng County of Shandong Province on the southern border of the Sulu orogen, there exposes an ultramafic belt, accompanied with an ultrahigh-pressure metamorphic zone. It can be further divided into the Xugou belt (the northern belt), and the Maobei-Gangshang belt (the southern belt). One grain of diamond has been discovered from the Zhimafang pyrope peridotite in the southern belt using the heavy mineral method. The diamond grain is 2.13 mm × 1.42 mm × 0.83 mm in size and weighs 9.4 mg. The occurrence of the diamond suggests that the Zhimafang pyrope peridotite xenolith is derived from the lithospheric upper mantle. The tectonic emplacement mechanism of the pyrope peridotite xenoliths in granite-gneisses is obviously different from those in kimberlite. The Sulu orogen was located on the active continental margin of the Sino-Korean craton in the Neoproterozoic. The relatively cold and water-bearing oceanic crustal tholeiite slab subducted beneath the lith  相似文献   

15.
1 IntroductionThe application of isomeric-nitrogen compounds astracers to oil-migration research is a piece of innovatorywork, and also a newbreakthrough made in non-hydro-carbon geochemistry research. At present, a lot ofwork has been done on nitrogen co…  相似文献   

16.
17.
E.E.Milanovsky 《《幕》》2004,27(2):101-106
Editorial note--The International Commission on the History of Geological Sciences has undertaken to organize a series of short articles for Episodes on the history of the different Sessions of the International Geological Congress. These were held as follows:France (1878), Italy (1881), Germany (1885), UK (1888), USA(1891), Switzerland (1894), Russia (1897), France (1900), Austria(1903), Mexico (1906), Sweden (1910), Canada (1913), Belgium(1922), Spain (1926), South Africa (1929), USA (1933), USSR(1937), UK (1948), Algeria (1952), Mexico (1956), Denmark/Finland/Norway/Sweden/Iceland (1960), India (1964), Czechoslovakia(1968), Canada (1972), Australia (1976), France (1980), USSR(1984), USA (1989), Japan (1992), China (1996), Brazil (2000). Any authors wishing to offer contributions on the meetings in Mexico(1906), Canada (1913), Belgium, Denmark, India, Canada (1972),and Brazil are invited to contact the INHIGEO Secretary-General at: doldroyd@optushome.com.au. The papers will not appear inchronological order.  相似文献   

18.
19.
Twenty black shale samples, which are free from the influence of weathering, were collected from the Chengjiang Fauna-bearing horizon, central Yunnan Province, yielding a Pb-Pb isochron age of 534±60 Ma. Although this age is younger than both the Rb-Sr isochron age and 40Ar-39Ar age, it should represent the lower isotopic age limit of the Chengjiang Fauna.  相似文献   

20.
The dating of fluid inclusions of quartz yields an Ar-Ar isochrone age of 320.4±6 Ma. Three types of fluid inclusions have been identified with the homogenization temperature ranging from 157℃ to 362℃. The homogenization temperature consists of two groups. The first group varies from 157℃ to 166℃, and the second from 232℃ to 362℃. Their chemical composition is dominated by Na+-Ca2+-Mg2+ and Cl-. The relative concentration of ions is characteristic by Na+>Ca2+>K+>Mg2+ and C1->SO42-> F-. The δD and δ18O values indicate that the ore-forming fluid originates from mixing of multi-source water. The Sarkobu gold deposit has experienced two mineralization stages: gold was enriched during the volcanic-exhalative-sedimentary process in the early stage, while the gold deposit was finally formed under compression-shearing during the orogenic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号