首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
本文首次提出了从观测得到的具有星周尘埃壳层的恒星的能谱分布求取星周尘埃云的消光,并由此可通过改正星周消光改正后的星际消光法求得恒星距离的方法。  相似文献   

2.
In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on the rigorous Mie theory and the latest optical properties of interstellar dust grains, and analyze the different extinction curves produced by dust grains with different physical parameters. Our results indicate that the absolute extinction quantity is substantially determined by the medium density and metallicity. However, the shape of the extinction curve is mainly determined by the size distribution of the dust grains. If the dust grains aggregate to form larger ones, they will cause a flatter or grayer extinction curve with lower extinction quantity. On the contrary, if the dust grains are disassociated to smaller ones due to some uncertain processes, they will cause a steeper extinction curve with larger amount of extinction. These results might provide an important insight into understanding the origin of the optically dark GRBs.  相似文献   

3.
The dust shell around the evolved star HD 179821 has been detected in scattered light in near-IR imaging polarimetry observations. Here, we subtract the contribution of the unpolarized stellar light to obtain an intrinsic linear polarization of between 30 and 40 per cent in the shell that seems to increase with radial offset from the star. The J - and K -band data are modelled using a scattering code to determine the shell parameters and dust properties. We find that the observations are well described by a spherically-symmetric distribution of dust with an r −2 density law, indicating that when mass-loss was occurring, the mass-loss rate was constant. The models predict that the detached nature of a spherically-symmetric, optically-thin dust shell, with a distinct inner boundary, will only be apparent in polarized flux. This is in accordance with the observations of this and other optically-thin circumstellar shells, such as IRAS 17436+5003. By fitting the shell brightness we derive an optical depth to the star that is consistent with V -band observations and that, assuming a distance of 6 kpc, gives an inner-shell radius of     , a dust number density of     at r in and a dust mass of     . We have explored axisymmetric shell models but conclude that any deviations from spherical symmetry in the shell must be slight, with an equator-to-pole density contrast of less than 2:1. We have not been able to fit simultaneously the high linear polarizations and the small     colour excess of the shell and we attribute this to the unusual scattering properties of the dust. We suggest that the dust grains around HD 179821 either are highly elongated or consist of aggregates of smaller particles.  相似文献   

4.
为了研究尘埃消光对伽玛射线暴余辉的影响,基于严格的Mie理论和最新的星际尘埃光学性质,进行了高精度的数值计算,并分析具有不同物理参数的尘埃所产生的消光曲线.结果表明,介质密度和金属丰度是决定消光总量的主要物理参数,而尘埃颗粒大小的分布则是产生不同消光曲线轮廓的重要物理参数.如果尘埃颗粒相互聚集形成导致尺度增大,将产生较平或者较灰的消光曲线,同时绝对总量将减少;相反,如果尘埃颗粒由于某种原因发生离解导致尺度变小,将产生较陡的消光曲线,同时消光总量将增加.这些结果将对理解光学暗暴的形成机制提供重要的启示.  相似文献   

5.
A number of variable stars of the Orion population has been identified with IRAS point sources by us. This finding supports the conclusion that the prominent Algol-like minima in the lightcurves of these stars originate from obscurations by dust clouds in a circumstellar shell. The discussion of the existingUBVR data leads to the remarkable conclusion that the extinction properties of the grain populations contained in individual dust clouds moving in one and the same circumstellar shell are quite different.From the multicolour photometric data of the different Algol-like minima we derived individual values of the reddening parameterR = A v /E(B - V). It covers a remarkable wide range of values from that one typical of the interstellar extinction law up to 7. In the case of SV Cep one of the grain populations produces a virtually neutral extinction. The large values ofR speak in favour of larger than normal (interstellar) dust grains, which may have grown by coagulation processes. The cloudy circumstellar dust shell provides a natural explanation for the observed infrared excess. The properties derived from the optical light variations are fully compatible with the properties deduced from the infrared radiation. The irregularity of the light variations indicates that many clouds are involved and may sometimes superimpose themselves.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

6.
Nova Cassiopeiae 1993 (V705 Cas) was an archetypical dust-forming nova. It displayed a deep minimum in the visual light curve, and spectroscopic evidence for carbon, hydrocarbon and silicate dust. We report the results of fitting the infrared (IR) spectral energy distribution (SED) with the dusty code, which we use to determine the properties and geometry of the emitting dust. The emission is well described as originating in a thin shell whose dust has a carbon:silicate ratio of 2:1 by number (  ∼1.26:1  by mass) and a relatively flat size distribution. The 9.7- and 18-μm silicate features are consistent with freshly condensed dust and, while the lower limit to the grain size distribution is not well constrained, the largest grains have dimensions  ∼0.06 μm  ; unless the grains in V705 Cas were anomalously small, the sizes of grains produced in nova eruptions may previously have been overestimated in novae with optically thick dust shells. Laboratory work by Grishko & Duley may provide clues to the apparently unique nature of nova unidentified infrared (UIR) features.  相似文献   

7.
The uncertainty of the spectral transmission function due to the nonsphericity of cosmic dust particles is analysed for optically thick C-rich and O-rich dust shells. The transmission function directly prescribes the intensity of radiation that passes through a dust shell. It is shown that nonspherical particles affect the stellar spectra in a different way than a system of equally sized spherical particles. Discrepancies in the stellar spectra for both morphological models (spheres and irregular targets) grow with optical thickness of the dust shell and the spectral behaviour of the optical thickness depends on the particle size distribution function. In particular, two most frequently used distrubutions, a power law and Dirac’s delta function, are considered in the presented numerical runs. Light transmission through C-rich dust shells is strongly influenced by absorption which dominates in case of carbonaceous particles. Irregularly shaped carbonaceous particles reduce the intensity of stellar spectra more efficiently than spherical particles of the same composition (the difference is about 10–30%). MgO particles which may be present in O-rich dust shells are almost pure scatterers, thus the ratio of transmission functions for irregularly shaped particles and spherical ones show specific resonant features (especially at wavelengths below 0.4 μm).  相似文献   

8.
Kimura  H.  Mann  I.  Wehry  A. 《Astrophysics and Space Science》1998,264(1-4):213-218
We deduce the mass distribution and total mass density of interstellar dust streaming into the solar system and compare the results to the conditions of the very local interstellar medium (VLISM). The mass distribution derived from in situ measurements shows a gentler slope and includes larger grains, compared to a model distribution proposed for the wavelength dependence of the interstellar extinction. The mass density of grains in the solar system is consistent with that expected from measurements of the visible interstellar extinction and the abundance constraints of elements in the diffuse interstellar medium (ISM), instead of those in the VLISM. This may imply that interstellar dust grains are not associated with the VLISM and that the conditions of the grains are better represented by the ones expected in the diffuse ISM. If this is the case, then the flatter slope in the mass distribution and the detection of larger interstellar grains in the solar system may even indicate that coagulation growth of dust in the diffuse ISM is more effective than previously inferred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A set of 31 oxygen-rich stars has been modelled using corundum and silicate grains. These stars were selected according to their dust-envelope class, as suggested by Little-Marenin and Little in 1990. Then 16 stars classified as Sil were modelled using silicate grains; 10 Broad class stars using corundum (Al2O3) grains; and 5 ' Intermediate ' class stars using two kinds of grain simultaneously: corundum and silicate. The temperature of the central stars and some characteristics of their circumstellar envelopes such as their extinction opacities and extensions were determined by fitting the flux curves. The corundum/silicate ratios as well as the energy distributions and temperature laws have been obtained. Based on the authors' results they suggest the existence of chemical and structural evolution of the modelled circumstellar dust shells. The temperature of the central stars and the temperature of the hottest grains decrease from Broad to Intermediate to Sil classes, while the inner radii and optical depths increase in this sequence.  相似文献   

10.
Dust grains respond to the physical and chemical conditions of the interstellar region in which they are embedded. The interaction produces an extinction curve which depends on the local environment and on the past history of the dust grains. In this work we present a theoretical study of the effects of radial variations of dust extinction properties on gas-phase chemistry in spherical core–halo clouds. We use observational constraints on the variation range of the extinction curve, and we analyse if the degree of dust environmental processing could be reflected by chemical signatures in the gas-phase molecular concentrations. The results of this work show that significant variations in the photodestruction rates and in the thermal profile of the cloud might induce chemical patterns otherwise excluded in the standard dense-cloud chemistry. Some discrepancies between observations and theoretical provisions are discussed in the light of the present results.  相似文献   

11.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). We adopt Nozawa et al. (2003) for compositions and size distribution of grains formed in SNe II and PISNe. We find that the extinction curve is quite sensitive to internal metal mixing in supernovae (SNe). The extinction curves predicted from the mixed SNe are dominated by SiO2 and are characterized by a steep rise from infrared to ultraviolet (UV). The dust from unmixed SNe shows a shallower extinction curve, because of the contribution from large-sized (∼0.1 μm) Si grains. However, the progenitor mass is important in unmixed SNe II: if the progenitor mass is smaller than  ∼20 M  , the extinction curve is flat in UV; otherwise, the extinction curve rises towards the short wavelength. The extinction curve observed in a high-redshift quasar  ( z = 6.2)  favours the dust production by unmixed SNe II. We also provide some useful observational quantities, so that our model might be compared with future high- z extinction curves.  相似文献   

12.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). Since at high redshift ( z > 5), low-mass stars cannot be dominant sources for dust grains, SNe II and PISNe, whose progenitors are massive stars with short lifetimes, should govern the dust production. Here, we theoretically investigate the extinction curves of dust produced by SNe II and PISNe, taking into account reverse shock destruction induced by collision with ambient interstellar medium. We find that the extinction curve is sensitive to the ambient gas density around a SN, since the efficiency of reverse shock destruction strongly depends on it. The destruction is particularly efficient for small-sized grains, leading to a flat extinction curve in the optical and ultraviolet wavelengths. Such a large ambient density as   n H≳ 1 cm−3  produces too flat an extinction curve to be consistent with the observed extinction curve for SDSS J1048+4637 at z = 6.2. Although the extinction curve is highly sensitive to the ambient density, the hypothesis that the dust is predominantly formed by SNe at z ∼ 6 is still allowed by the current observational constraints. For further quantification, the ambient density should be obtained by some other methods. Finally, we also discuss the importance of our results for observations of high- z galaxies, stressing a possibility of flat extinction curves.  相似文献   

13.
The results of an investigation of circwnstellar dust shells around 22 early- type stars with emission lines are given. The absorption at 1640 Å, the linear sizes, and the masses of the dust shells were determined. They differ from one another (see Table 1). In determining the mass of a shell, the radius of the H II zone was taken into account, where the average electron density in the gaseous shell was taken to be ne = 2.5·105 cm-3.  相似文献   

14.
Mapping observations have been made toward five carbon stars in the far-infrared using ISOPHOT, an imaging photo-polarimeter on board the Infrared Space Observatory. Cold, very extended dust shells are clearly revealed in two of them. Y CVn is surrounded by a very extended, detached dust shell, which indicates a sudden decline of the mass-loss by two orders of magnitude in the last (1-2) × 104 years on a short time scale. The Hipparcos parallax reinforces our previous conclusion that Y CVn is a J-type carbon star on the asymptotic giant branch. U Ant shows a double shell structure, a compact dust shell surrounded by a very extended one. The outer shell has a brightness comparable to the dust shell of Y CVn. The structure indicates that there were two different high mass-loss phases separated by a period with a much lower mass-loss rate in between the two. The structure is consistent with the double dust shell proposed for this star by Izumiura et al. (1997) based on a detailed investigation of IRAS survey data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The transfer of polarized radiation in inhomogeneous circumstellar shells with a spheroidal spatial distribution of porous dust particles is computed. The grains are modeled by an MRN mixture of silicate and graphite particles. The optical properties of porous particles (considered separately in the Appendix) are computed by using effective medium theory and Mie theory. The following observational characteristics have been computed for WW Vul, a typical Herbig Ae star with Algol-like minima: the spectral energy distribution from the ultraviolet to the far infrared, the color-magnitude diagrams, the wavelength dependence of linear polarization, and the shell brightness distribution. The effect of grain porosity on the results is considered. It has been found that only moderate particle porosity (the volume fraction of matter is f ~0.5) can explain available observational data in terms of the approach used. Since radiation pressure must rapidly sweep submicron-sized grains out of the vicinity of Herbig Ae/Be stars, we briefly discuss how particle porosity can affect this process.  相似文献   

16.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

17.
The problem of dust formation in the circumstellar envelopes of Asymptotic Giant Branch stars is addressed. We summarize the basic thermodynamic prerequisites necessary to enable the formation and growth of solid particles from the gas phase and draw some conclusions on the evolution of the emergent dust component. In a circumstellar environment the dust grains interact with the stellar radiation field, which leads to a strong coupling among the local thermodynamic conditions and the dust formation process itself. By a consistent treatment of the physics describing the dust forming circumstellar shells of evolved stars we demonstrate, that the non-linear interaction among the dust formation process and the hydrodynamic and thermodynamic conditions of the dust forming system leads to a complex dynamical structure of these shells. Some observable consequences resulting from corresponding model calculations are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
It has long been established that the ratio of total to selective extinction is anomalously large (>- 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we calculate the extinction for porous and fluffy grains. We apply DDA first to solid spheroidal particles assumed to be made of a certain (large) number of dipoles. Then we systematically reduce the number of dipoles to model the porous grains. The aggregates of these particles are suggested to form the fluffy grains. We study the extinction for these particles as a function of grain size, porosity and wavelength. We apply these calculations to interpret the observed extincttion data in the regions of star formation (e.g. the Orion complex).  相似文献   

19.
The extinction properties of H  ii regions in the Large Magellanic Cloud are investigated using radio continuum data obtained from the Molonglo Observatory Synthesis Telescope, digitized and calibrated Hα data and published Balmer decrement measurements. The resulting extinction–colour excess diagram suggests that (1) most H  ii regions in the Magellanic Clouds have similar extinction properties to the Galactic ones, (2) all imaginable gas/dust configurations are possible, (3) the extinction of some highly reddened H  ii region cores originates externally in cocoon shells.   The puzzle of different extinction–colour excess ratios of Galactic and extragalactic H  ii regions is explained as being due to the different populations of observed samples rather than any intrinsic differences. The extinction of the observed Galactic H  ii regions produced by foreground dust overwhelms the internal extinction, while the situation in the observed extragalactic H  ii regions is just the opposite.  相似文献   

20.
We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic turbulence can accelerate grains through resonant as well as non-resonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvénic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for submicron grains. We provide comprehensive discussion of all the possible grain acceleration mechanisms in interstellar medium. We show that supersonic velocities are attainable for Galactic dust grains. We discuss the consequence of the acceleration. The implications for extinction curve, grain alignment, chemical abundance etc. are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号