首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
首先给出利用遥感信息结合作物光合生理特性研究作物产量水分胁迫模型的一般性概念,然后论述作物产量水分胁迫模型中作物蒸散和光合作用的关系.建立以作物蒸散为显参的作物产量水分胁迫模型;对模型的参数给出求解公式,利用遥感信息反演模型参数.最后利用发展的作物产量水分胁迫模型对华北平原典型区进行作物产量填图,将本模型与作物产量经验模型的1997年计算结果进行比较,发现本文发展的模型有可比的精度.  相似文献   

2.
以冬小麦品种“齐麦2号”为试材,在水分关键期(拔节期~扬花期),设计5个水分处理(T1处于适宜水平,T2、T3、T4、T5分别按照水分关键期常年降水量减少20%、50%、75%、100%进行一次性补水)和1个雨养对照水分控制试验,模拟研究不同程度干旱胁迫对水分关键期冬小麦光合生理特性、抗氧化酶活性及产量结构的影响。结果表明:轻度干旱胁迫会造成冬小麦叶片最大光合速率、气孔导度、胞间CO2浓度降低,气孔限制值升高,气孔因素是导致冬小麦叶片光合速率降低的主要原因;而当干旱胁迫达到重度时,胞间CO2浓度升高,气孔限制值降低,非气孔因素是导致冬小麦叶片光合速率降低的主要原因。轻度干旱胁迫会使得冬小麦叶片SOD酶、POD酶、CAT酶活性显著升高,从而减轻MDA含量升高对冬小麦叶片膜系统的损伤,复水后抗氧化酶活性和MDA含量均可恢复至正常水平,而重度干旱胁迫下冬小麦叶片SOD酶、POD酶、CAT酶活性不同程度降低,复水后抗氧化酶活性及MDA含量均无法恢复至正常水平,抗氧化酶系统遭受不可逆损伤。此外,水分关键期干旱胁迫还导致冬小麦灌浆速率降低、不孕穗率升高,理论产量大幅降低。研究结论可为科学评估干旱胁迫对冬小麦生长发育及产量形成的影响提供理论依据。  相似文献   

3.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

4.
高素华  康玲玲 《气象》2005,31(6):74-76
采用最大可能蒸散、作物实际蒸散、水分盈亏、水分订正系数评价了黄土高原多沙粗沙区主要作物(春小麦、冬小麦、春玉米、夏玉米和棉花)和草地生长季水分供需状况,结果表明,需水量:冬小麦>棉花>春玉米>春小麦>夏玉米;水分订正系数:春玉米>夏玉米>棉花>春小麦>冬小麦。草地需水量为350~450mm,水分订正系数0.95以上,水分供需矛盾小,实施退耕还牧无论对缓解水资源短缺,还是改善生态环境,在黄土高原多沙粗沙区都是十分有效的措施。  相似文献   

5.
黄淮海平原冬小麦最大可能蒸散的估算   总被引:1,自引:1,他引:0       下载免费PDF全文
作物最大可能蒸散考虑了作物及当地地表状况,为当地地表实际覆盖情况下实际蒸散的理论上限值,能客观分析作物对水分的需求程度和农业干旱状况。基于遥感(叶面积指数和地表反照率)数据和逐日气象数据,利用Penman-Monteith公式,计算黄淮海平原小麦种植区27个气象站冬小麦生育期2000-2015年逐日蒸散,提取得到冬小麦生育期逐日最大可能蒸散数据集,并分析其时空变化特征及成因。结果表明:与联合国粮农组织(FAO)单作物系数法计算的最大可能蒸散Ek对比,区域平均最大可能蒸散Ec的时间变化趋势与Ek一致,空间分布上Ec符合客观实际。黄淮海平原冬小麦全生育期、越冬期和返青-拔节期Ec均呈北低南高的分布特征,日平均值分别为1.99 mm,0.44 mm和2.75 mm;其余3个生育期(越冬前、抽穗期、乳熟-成熟期)在空间分布上差异不大,日平均值分别为1.23 mm,4.71 mm和3.74 mm。冬小麦不同生育期(含全生育期)Ec的空间分布主要受叶面积指数分布特征的影响,二者呈显著正相关关系。  相似文献   

6.
水分胁迫对华北平原冬小麦地上部分及产量的影响   总被引:1,自引:0,他引:1  
以“济麦-22”为供试品种,利用中国气象局固城生态环境与农业气象试验站大型根系观测系统,研究冬小麦在重度干旱胁迫(≤40.0%)、轻中度干旱胁迫(40.1%-55.0%)和适宜(55.1%-80.0%)3种水分胁迫条件下地上部分对水分胁迫的响应,以探索水分胁迫对华北平原冬小麦产量的影响,分析不同水分胁迫对冬小麦产量的影响程度。结果表明:华北平原冬小麦在轻中度干旱胁迫和重度干旱胁迫下,小麦全生育期的天数缩短,株高、叶面积及灌浆速率均呈不同程度的减少。3种水分胁迫的株高增长量为适宜>轻中度胁迫>重度胁迫,灌浆速率为适宜>轻中度胁迫>重度胁迫。土壤水分胁迫引起冬小麦物质分配更多地向支持生长的茎秆转移,在生长发育过程中受到水分胁迫,小麦产量将降低,重度胁迫条件下小麦产量为适宜水分条件的69%。  相似文献   

7.
分析了西峰站连续四年的作物发育状况和土壤湿度的观测资料,得出了麦田蒸散耗水的基本规律。探讨了影响小麦生长发育和产量形成的关键需水期。提出作物耗水特性系数的概念,并以此评判冬小麦发育期水分的供需状况,得出两年度冬小麦产量偏低的原因在于拔节-成熟期耗水特性系数明显偏小。建议及时灌孕穗水降低不孕小穗率,灌灌浆水提高小麦重粒重。  相似文献   

8.
陆地蒸散(ET)涵括地表和潮湿叶片的蒸发和植物的蒸散发,是陆地水循环的重要组成部分。Penman-Monteith方程是估算陆地蒸散的重要方法,方程中的叶片或冠层气孔导度是提高估算精度的关键因子。根据碳水循环的耦合原理,植物光合作用模型可用于估算叶片或冠层气孔导度。植物光合作用模型可分为三类:1)使用总冠层导度的大叶模型(BL),2)区别阴、阳叶冠层导度的双大叶模型(TBL),3)区别阴、阳叶叶片导度的双叶模型(TL)。与这三类光合作用模型相对应,衍生出基于不同导度计算方法的三种蒸散估算模型。三种蒸散模型之间的主要区别在于是否进行从叶片尺度到冠层尺度的气孔导度集成。这三种模型中,双叶模型使用叶片尺度的气孔导度,集成度最低。反之,大叶模型使用冠层尺度的气孔导度,集成度最高。由于在Penman-Monteith中,蒸腾和气孔导度之间的关系是非线性的,气孔导度的集合会导致负偏差。因此,与通量测量相比,大叶蒸散模型的估算偏差最大,而双叶蒸散模型的估算偏差最小。  相似文献   

9.
通过2011-2013年2个越冬期的盆栽试验,利用高低温(交变)湿热试验箱研究了不同最低温度下(-9℃、-6℃、-3℃和0℃)冬灌对冬小麦叶片理化性质、产量构成要素及产量的影响。结果表明,与最低温度为0℃的处理相比,在最低温度为-9℃和-6℃的处理造成了冬小麦叶绿素含量和气孔导度的大幅下降,可溶性糖含量大幅升高,差异均达显著(p0.01),灌水处理并没有带来明显的改善;而最低温度为-3℃时,叶绿素和可溶性糖含量总体上无明显差别,气孔导度则有一定程度的降低,差异显著(p0.05),冬灌导致其叶片叶绿素和可溶性糖含量分别有不同程度的升高和降低,具有明显的正效应。最低温度为0℃的处理,冬灌对冬小麦叶片叶绿素含量、可溶性糖含量及气孔导度等影响均有明显的正效应。从产量及其构成要素上看,-6℃与-9℃条件下,冬灌致使单株小穗数、穗粒数和穗粒重下降;-3℃和0℃条件下,冬灌提高了单株穗粒数和穗粒重。综上所述,最低温度在-6℃及以下不适合进行冬灌,而最低温度在-3℃及以上则适合。  相似文献   

10.
《高原气象》2021,40(3):632-643
利用LI-6400XT便携式光合作用测定系统和Model 1505植物压力室对河西走廊中部荒漠-绿洲过渡带3种优势种C_4植物梭梭(Haloxylon ammodendron)、沙拐枣(Calligonum mongolicum)和C_3植物泡泡刺(Nitraria sphaerocarpa)的水分交换过程和叶片水势(Ψ)变化进行了观测试验,对比了荒漠植物生长季降水前后水分传输因子的变化;模拟了气孔导度对主要环境因子和叶片水势的响应;从饱和水汽压差(VPD)对气孔导度的制约作用研究了荒漠植物蒸腾的调控机制。结果表明:影响3种灌木气孔导度的主要因子依次为VPD、气温(T)和Ψ,气孔导度随着VPD和T的升高而降低,随着Ψ的降低逐渐减小;不同荒漠植物气孔导度对环境因子和叶片水势的综合响应模拟研究表明,模型能够很好地模拟气孔导度日内变化,C_3植物泡泡刺对这些因子变化的响应比C_4植物梭梭和沙拐枣更敏感;通过类比于欧姆定律,表明可用气孔导度和VPD的乘积来对蒸腾速率进行线性模拟,相关性很强。  相似文献   

11.
土壤水分对冬小麦影响机制研究   总被引:5,自引:1,他引:5  
郭建平  高素华 《气象学报》2003,61(4):501-506
文中通过试验系统地研究了冬小麦叶片气孔形态与土壤湿度的关系,结果表明:土壤干旱使气孔密度增加,上表皮的密度大于下表皮;气孔开张度随土壤湿度下降而变小;气孔导度与土壤湿度呈指数相关,随土壤含水量的下降呈指数减少。随土壤湿度的改变小麦的生理过程也发生改变,蒸腾速率随土壤湿度下降呈指数减小。并研究了土壤干旱对叶绿素超微结构的影响及与脯氨酸的关系。  相似文献   

12.
Mass and energy fluxes between the atmosphere and vegetation are driven by meteorological variables, and controlled by plant water status, which may change more markedly diurnally than soil water. We tested the hypothesis that integration of dynamic changes in leaf water potential may improve the simulation of CO2 and water fluxes over a wheat canopy. Simulation of leaf water potential was integrated into a comprehensive model (the ChinaAgrosys) of heat, water and CO2 fluxes and crop growth. Photosynthesis from individual leaves was integrated to the canopy by taking into consideration the attenuation of radiation when penetrating the canopy. Transpiration was calculated with the Shuttleworth-Wallace model in which canopy resistance was taken as a link between energy balance and physiological regulation. A revised version of the Ball-Woodrow-Berry stomatal model was applied to produce a new canopy resistance model, which was validated against measured CO2 and water vapour fluxes over winter wheat fields in Yucheng (36°57′ N, 116°36′ E, 28 m above sea level) in the North China Plain during 1997, 2001 and 2004. Leaf water potential played an important role in causing stomatal conductance to fall at midday, which caused diurnal changes in photosynthesis and transpiration. Changes in soil water potential were less important. Inclusion of the dynamics of leaf water potential can improve the precision of the simulation of CO2 and water vapour fluxes, especially in the afternoon under water stress conditions.  相似文献   

13.
在冬小麦抽穗—灌浆期进行了水分胁迫实验,利用美国Licor公司生产的Licor-188B辐射量子照度仪及Licor-6400便携式光合作用测定仪,对水分胁迫引起的冬小麦光合生理生态变化进行了系统观测,系统地给出了冬小麦多种农业气象指标对水分胁迫的响应状况。在大量实测数据基础上,给出了包含辐射强度、温度及土壤水分因子的冬小麦叶片光合作用模式。该模式具有严格的理论推导过程和大量实验数据的支持,改进了传统水分胁迫对叶片光合速率影响的简单阶乘方法,从而为进一步准确推算水分胁迫对大田冬小麦光合作用的可能影响,以及水分胁迫对区域农业干旱的可能影响奠定了前提条件。该研究是冬小麦干旱预测模型的叶片子模型,为冬小麦农业干旱预测模型提供了丰富的基本参数,同时也为建立冬小麦干旱预测模型奠定了基本条件。  相似文献   

14.
The controlled simulation experiments revealed that ozone concentration increases cause various degrees of injury to leaves of crop and vegetable.The injury to vegetables is greater than that to crops.Ozone can dramatically affect stomatal conductance,photosynthetic rate and transpiration rate,and consequently the yield of crops.No matter how long exposure time was, stomatal conductance increased and photosynthetic and transpiration rates decreased with increases in ozone concentration.When ozone concentration was 100 nmol/mol,yields of rice and winter wheat declined by 27.1% and 60.5% respectively.When up to 200 nmol/mol,there was a significant reduction of yields:a decline up to 33.7% for rice and 81.3% for winter wheat.On the other hand,ozone benefits the improvement of grain quality such as amino acid and protein.  相似文献   

15.
CO2补偿点是作物生长模型中最基本的关键模型参数之一,本文利用Licor-6400便携式光合作用测定仪,对1949年以前和1949-2005年中国华北地区不同年代冬小麦主要品种的生理生态参数进行大量的系统测定,在此基础上,对华北地区不同冬小麦品种的光合作用模型进行拟合,以确定不同年代不同品种冬小麦CO2的补偿点。结果表明:中国华北地区冬小麦CO2补偿点随光强升高而降低,在800 μmol·m-2·s-1光量子通量密度条件下,野生麦种CO2补偿点最高,达123.40 μmol·mol-1。1949-2005年华北地区不同冬小麦品种中泰山1号CO2补偿点最高,达107.07 μmol·mol-1;红秃头CO2补偿点最低,为57.25 μmol·mol-1;不同品种冬小麦CO2补偿点最高值和最低值差值为49.82 μmol·mol-1,说明华北地区冬小麦随品种演化CO2补偿点变化明显。建立了中国华北地区7个典型冬小麦品种包含CO2因子的直角双曲线光合作用模型,确定了不同年代不同品种冬小麦CO2的补偿点,为进一步建立包含CO2直接作用的气候变化影响评估机理模型提供基础数据。  相似文献   

16.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants.It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported.The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods-one was impacts of ozone on light use efficiency , and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coe cients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

17.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants. It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported. The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods- one was impacts of ozone on light use efficiency, and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coefficients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号