首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleomagnetic characteristics of Carboniferous-Permian and Early Mesozoic geological complexes in Mongolia are studied. The studied rocks are shown to possess a multicomponent magnetization. Lowtemperature overprinting components of normal polarity discovered in nearly all of the studied strata were acquired after main deformation stages of the rocks, apparently in the Cenozoic. High-temperature overprinting components of reversed polarity identified in rocks of an active continental margin (ACM) were acquired when bimodal magma melts moved through ACM volcanic sequences. Late Carboniferous and Early Permian paleomagnetic poles of Mongolia calculated from directions of primary magnetization components are, respectively (Λ = 154.6, Φ = 32.2, A = 7.8) and (Λ = 95, Φ = 71, A = 8.7). Apparently, the territory of Mongolia in the Early Permian was a margin of the Siberian craton and was separated from the Northern China block by a basin extending for no less than 2000 km in the E-W direction. The strike of a marginal-continental volcanic belt was submeridional and a plate subducted under the continent from the east. Late Carboniferous-Permian intraplate magmatic complexes of Mongolia formed at various latitudes from various mantle sources during the northward movement of the Mongolian part of the Siberian continent. The oldest bimodal sequences of the Gobi-Tien Shan zone (318–314 Ma) formed at more southern latitudes (40°–47°–54°N) as compared with the 275-Ma complexes of the Gobi-Altai zone (51°–58°–67°N). Thus, sources of the Carboniferous-Permian intraplate magmatism in Central Asia either occupied a vast mantle region (up to 1000 km in the latitude direction) or moved together with the Asian continent.  相似文献   

2.
Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).  相似文献   

3.
In the present paper the new petro- and paleomagnetic data on the Jurassic terrigenous complexes of the Mesozoic sedimentary basins of the Amur River region, Trans Baikal region, and Yakutia are presented. The magnetic properties of the sedimentary rocks of coastal-marine (paleo-shelf) and lake genesis are investigated in the contemporary intracontinental riftogenic Mesozoic superimposed troughs of the Siberian and Amur plates: the Chulmansk, the Unda-Dainsk, the Sredne-Amur, the Amuro-Zeisk, and the Verkhne-Bureinsk troughs. The statistically significant differences in the magnetic (anisotropic) characteristics of continental and marine deposits were inferred. The correlation of the scalar and tensor characteristics of magnetic susceptibility anisotropy and the parameters of its linearity, which depend indirectly on the intensity of the folding, is established. The preferential directions of regional stress during the fold formation are determined based on the analysis of the distribution of the axes of the tensor ellipsoid of the magnetic susceptibility anisotropy. The Jurassic positions of the paleomagnetic pole, which are close to the Mesozoic section of the trajectory of its apparent motion for the North Chinese plate and which differ from the Jurassic poles of the Siberian plate, are defined more accurately. The intraplate rotations of geoblocks within the limits of the amalgamated to the end of the Jurassic-to the beginning of the Cretaceous terrains as a part of the Amur tectonic plate are inferred. The calculated coordinates of the paleomagnetic pole indicate the larger than the present-day difference of the latitudinal positions of the southern part of the Siberian plate, and also of the Amur and North Chinese plates in the Early-Middle Jurassic time. This can be indicative of the fact that the total width of the shallow residual basins of the Paleo-Asian Ocean, which separated the geoblocks indicated in the Early-Middle Jurassic, attained the first thousands of kilometers, and/or such a difference in the paleolatitudes reflects the total value of the shortening (crowding) of the crust during the accretion and the fold formation. The time of the completion of the accretion of the terrains of the Amur and the North-Chinese plates and their attachment to the Siberian plate is not earlier than the end of the Late Jurassic-the beginning of the Cretaceous.  相似文献   

4.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

5.
We present the results of studying the paleomagnetic samples of Carboniferous and Devonian rocks collected in 1986–1987 from the Island of Spitsbergen. The paleomagnetic poles determined from these collections are compared to the poles from the coeval rocks of the Russian Platform. On the basis of these results and the available data of the World paleomagnetic database, the paleogeographic layout of Spitsbergen and the Russian Platform in Early Devonian and Early Triassic are reconstructed. The reconstructions demonstrate a common north-northwestern drift of these units from the southern equatorial latitudes in the Early Devonian to the middle northern latitudes with a small (800 km) convergence, compared to this drift, of Spitsbergen with the Russian Platform by the Early Triassic, which is followed by the subsequent retrograde motion.  相似文献   

6.
The paper presents results derived from study of the Silurian of the Nyuya-Berezovskii facial province. Variegated sedimentary rocks of the Meutian and Kurungian series (Llandoverian, Wenlockian, and lower Ludlovian) are studied. Detailed thermal demagnetizations of the collections revealed two stable magnetization components; one of them (Ds = 193.8, Is = 19.2; k = 10.7, α95 = 6.1) is bipolar and is likely to have formed during or shortly after the rock formation, i.e., in the interval from the Early Silurian to the beginning of the Late Silurian. The second component is unipolar and apparently metachronous, and its formation time can be bounded by the latest Early to the Middle Devonian. Based on the paleomagnetic results of this study, paleolatitudes and kinematics of Siberia are estimated for the Middle Paleozoic. The inferred paleomagnetic poles provide additional constraints on the Middle Paleozoic segment of the apparent polar wander path from the Siberian platform.  相似文献   

7.
New paleomagnetic data are presented for Proterozoic metamorphic and Cambrian terrigenous-carbonate complexes of the southern Far East of Russia (Primor’e and the Amur and Trans-Baikal regions). Taking into account our results obtained previously, the paper presents revised positions of the paleomagnetic pole corresponding to the Riphean-Lower Paleozoic segment of the apparent polar wander path for terranes of the Amur plate (the Argun and Bureya-Khanka orogenic belts) in comparison with poles from the Siberian and North Chinese plates. It is shown that the paleolatitude positions of the Amur terranes were stable in space and time during the interval from the late Riphean to the end of the Early Cambrian: they were located in equatorial zones of the Northern and Southern hemispheres.  相似文献   

8.
New data for the Early and Late Carboniferous sections of the Russian platform (Moscow syneclise and Donbass) are presented. Magneto-mineralogical studies are carried out to identify the magnetic minerals—carriers of natural remanent magnetization. Extensive Late Paleozoic remagnetization of Carboniferous rocks is revealed. The obtained paleomagnetic data allowed us to determine the average paleomagnetic poles for the Gzhelian, Serpukhovian, and Visean stages of Carboniferous deposits of the Moscow syneclise.  相似文献   

9.
The collections of Carboniferous rocks from sections of the Russian Platform (Gzhelian, Moscovian, Bashkirian, and Visean stages) are studied. The new mean paleomagnetic poles are obtained from the Gzhelian, Moscovian, and Visean layers of the Carboniferous of the Russian Platform. In the redbed Gzhelian and Moscovian rocks, the natural remanent magnetization (NRM) components with the inclination shallowing are revealed, which is due to the presence of the large hematite particles or particle aggregates associated with the interaction between the magnetic and clay particles. Based on the obtained determinations and the results contained in the World paleomagnetic database, the trajectory of the apparent polar wander path (APWP) for the East European Platform is constructed in the interval from the Devonian to Early Permian. The Carboniferous kinematics of the East European Platform is estimated.  相似文献   

10.
The results of paleomagnetic studies of the reference sections of the Riphean and Late Proterozoic intrusive bodies of two remote areas of the Siberian Platform are presented. Within the limits of the Uchur-Maya region the sedimentary rocks of the Gonam, Omakhta, Ennin and Konder formations were studied; and the Riphean sedimentary rocks of the Burdur and Kotuykan formations on the northern and western slopes of the Anabar Uplift and, also, the Late Proterozoic intrusive complexes, located in the basins of the Fomich, Magan, Dzhogdzho and Kotuykan Rivers were studied. The paleomagnetic poles obtained in the course of this work and the present-day geochronological data give grounds to assume that: (1) the accumulation of the Riphean of the Anabar Uplift occurred after the formation of the Uchurskaya series of the Uchur-Maya region and was completed in approximately 1.5 Ga; (2) the Konder layers, compared according to the correlation pattern accepted at the present time [Semikhatov and Serebryakov, 1983] with the bottoms of the Totta formation, can be related to the appreciably more ancient stratigraphic level; (3) the intrusion of the studied intrusive bodies of the northern and western slopes of the Anabar Uplift occurred nonsimultaneously, although within close time intervals of approximately 1.5 Ga. The estimates of the kinematic parameters of the drift of the Siberian Platform within an interval of 1.7–1.0 Ga is carried out.  相似文献   

11.
The rock magnetic and paleomagnetic results from the Upper Paleozoic sedimentary sequences composing the isles of the Novaya Zemlya Archipelago are presented. The recorded temperature dependences of the magnetic susceptibility, the magnetic hysteresis parameters, and the results of the first-order reversal curve (FORC) measurements suggest the presence of single-domain or pseudo-single-domain magnetite and hematite grains in the rocks. The Upper Paleozoic deposits overall are promising for unraveling the tectonic evolution of the Barents–Kara region. Together with the rock magnetic data, the positive fold and reversal tests testify to the primary origin of the indentified magnetization components. However, the interpretation of the paleomagnetic data should take into account the probable inclination shallowing. New substantiation is offered for the paleomagnetic poles for Early Devonian and Late Permian. For the first time, paleomagnetic constraints are obtained for the Late Carboniferous boundary. It is shown that the Early Cimmerian deformation stage within the Paikhoi–Novaya Zemlya region is associated with the sinistral strike slip displacement along the Baidaratskii suture during which the internal structure of the Southern Novaya Zemlya segment could undergo shear in addition to the nappe-thrust transformations. The Northern Novaya Zemlya segment, which is shifted northwest with respect to the Southern segment, was deformed in the thrusting mode with an overall clockwise rotation of this segment relative to the East European Craton.  相似文献   

12.
Summary A reconnaissance paleomagnetic study of Hispaniola shows that three igneous units in the Dominican Republic possess meaningful directions of magnetism. A Late Cretaceous tonalite, an Eocene pyroxene diorite and a Miocene andesite porphyry have been investigated. The rock material studied is fresh, and has not been affected by secondary oxidation except in the case of the andesite which is occasionally weathered and reveals some hydrothermal alteration. Alternating field and thermal demagnetization result in removal of viscous remanence in some samples, while others reveal a good stability of NRM and little change in direction. The results disclose directions of magnetization substantially different from that of the present earth's field in Hispaniola and from those obtained from contemporaneous rocks of North America. They yield paleomagnetic poles at 23.1° N, 144.9° W for the Cretaceous tonalite and at 17.4° N, 138.0° W for the Eocene diorite, the positions of which are not significantly different from each other, suggesting no change of geomagnetic field direction during the two epochs. These poles have generally similar positions to those obtained from Late Cretaceous rocks on Jamaica and Puerto Rico. The Miocene data fall into two groups, one having a direction corresponding to a pole closely coinciding with the Miocene North American pole and the other giving a paleomagnetic pole at 68.3° N, 151.9° W coinciding with the Miocene pole for Jamaica. Paleotectonic interpretation of the results suggests that like other Greater Antilles, Hispaniola has been subject to large anticlockwise rotation since Late Cretaceous.  相似文献   

13.
The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of ~2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = ?5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier–Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean–Early Proterozoic.  相似文献   

14.
The Meso-Cenozoic paleomagnetic poles from the Siberian platform and its folded margins, which comply with the modern technical and methodological standards, are analyzed. The analysis suggests the following conclusions. (1) The geometrical relationship between the Permo-Triassic poles of the Stable Europe and Siberian Platform prohibits the possibility of relative displacements of these platforms in the post-Paleozoic time. (2) The Mesozoic paleomagnetic poles of the Siberian Platform support the hypothesis of rigid Northern Eurasia. (3) The paleolatitudes of the Mesozoic sections located on the folded margins of the Siberian Platform closely agree with the Apparent Polar Wandering Path (APWP) for Europe. (4) The available data indicate that the vertical-axis rotation of separate local blocks within the folded margins of the Siberian Platform was a widespread phenomenon. Therefore, (1) the modern paleomagnetic data quite certainly show that consolidation of the Northern Eurasian continent was completed by the end of Permian, and, since the very beginning of the Mesozoic, the Siberian and East-European platforms have been parts of a single rigid megablock. (2) The Meso-Cenozoic segment of the APWP for Europe can be used as reference for the Siberian platform.  相似文献   

15.
No paleomagnetic data exist for Paleo-Mesoproterozoic times of the West African Craton (WAC). Therefore, paleogeographic reconstructions for such old geological times are difficult to constrain. Gaps on the sedimentary record and intense remagnetizations are the major problems that paleomagnetic studies come across. Recent geochronological results for dyke swarms that intrude several Proterozoic inliers of WAC in the Anti-Atlas Belt (southern Morocco) revealed ages between Paleoproterozoic and early Neoproterozoic, opening for the first time a window of opportunity to conduct paleomagnetic studies and tentatively infer about the paleoposition of WAC during Proterozoic. On this scope we conducted a paleomagnetic study on seven Proterozoic dykes of the Iguerda inlier. The meaning of the obtained paleomagnetic directions was evaluated by rock magnetic and mineral analyses, complemented by petrographic observations. Our samples record the presence of a complex history of remagnetization, mostly assigned to several Phanerozoic thermal/chemical events, in particular to the late stages of Pan African orogeny (s.l.), to the Late Carboniferous Variscan orogeny, and even to more recent events. The recognized remagnetization processes are related to widespread metamorphic events under greenschist facies followed by low-temperature oxidation, both responsible for the formation of new magnetic phases, like magnetite and hematite. These events obliterated the primary (magmatic) thermo-remanent magnetization and promoted multiple remagnetizations of the dykes, thermally and chemically. For only one dyke the presence of primary magnetization is possible to infer, though not to confirm, and would place WAC at an equatorial position around 1750 Ma.  相似文献   

16.
The new paleomagnetic data on forty dikes and two intrusive plutons of Devonian age located in different parts of the Kola Peninsula, which have not been previously covered by systematic paleomagnetic studies, are reported. We describe the results of the rock magnetic, petrographic, and microprobe investigations of the Devonian dikes and present their isotopic ages (40Ar/39Ar, stepwise heating). Within the studied area, almost all the Devonian dikes, metamorphic Archaean-Proterozoic complexes of the Fennoscandian Shield, and Proterozoic dikes have undergone low-temperature hydrothermal-metasomatic alteration, which resulted in the formation of new magnetic minerals with a secondary (chemical) component of magnetization. The comparison of the paleomagnetic poles indicates the Early Jurassic age of the secondary component. We suggest that regional remagnetization event was caused by endogenic activity genetically related to the formation of the Barents Sea trap province 200–170 Ma ago. On the basis of the obtained data, the preliminary Devonian paleomagnetic pole of the East European Platform is determined.  相似文献   

17.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

18.
The collections of Permian rocks from sections of the Kozhim River (Asselian, Kungurian, and Ufimian stages) and the Kama River (Ufimian and Kazanian stages) are studied. The paleomagnetic directions determined on the studied structures closely agree with the existing data for the Subpolar Urals and Russian Platform (RP). In the Middle Permian red clays of the Kama River region, the paleomagnetic pole N/n = 28/51, Φ = 47° N, Λ = 168° E, dp = 3°, and dm = 5° is obtained. The analysis of the existing paleomagnetic determinations for the Early and Middle Permian of the Russian and Siberian platforms and Kazakhstan blocks (KBs) is carried out. For the Subpolar Ural sections, the estimates are obtained for the local rotations during the collision of the Uralian structures with the Russian and Siberian platforms and KBs. The amplitudes of the horizontal displacements of the studied structures are, on average, 170 ± 15 km per Middle Permian. The scenario describing the evolution of the horizontal rotations of the structures of Subpolar Urals is suggested.  相似文献   

19.
Although paleomagnetic study of the Early Paleozoic for the North China Block (NCB) has witnessed rapid progress since the 1980s, significant difference in the results can be found from the widespread areas in North China. Besides the paleomagnetic techniques used in the laboratories, the difference of these Paleozoic poles could also be due to the early and late Mesozoic remagnetization in the eastern part of China. It is therefore necessary to carry out systematic paleomagnetic and rock magnetic studies for the Early Paleozoic rocks in the NCB. The remagnetizarion re-sults from the northwestern part of Henan Province are reported, and related geological implications are discussed.  相似文献   

20.
Magnetic properties of samples from Bell Island sedimentary rocks have been studied. X-ray analysis indicates that the main magnetic mineral is hematite in all samples. The other iron-bearing minerals identified are siderite and chamosite. Microscope observations of thin sections suggest that the rocks consist of oolitic hematite in a matrix of siderite or calcite. The intensity of natural remanent magnetization (NRM) varies in the range of (0.03–0.4 A m?1), depending on the percentage of hematite. The thermal demagnetization curves of NRM show in some cases a sharp increase in magnetization at temperatures in the range 500–600°C. The peaks that occur in these demagnetization curves are due to a chemical change of siderite during repeated laboratory heating. X-ray analysis confirmed that the newly formed material is magnetite. Since the original NRM has been masked by the new intergrown material, this would result in a serious error in the determination of paleomagnetic pole positions. The samples showing this behaviour were not considered for paleomagnetic study. The samples containing oolitic hematite in a calcite matrix exhibit very high stability of NRM, including directional stability until almost 670°C. For these samples, a virtual pole position based on N = 6 samples (32 specimens) demagnetized to 665°C is 34°N, 114°E, not far from published Ordovician poles for the North American craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号