首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
Heavy metals accumulation in plants growing in ex tin mining catchment   总被引:4,自引:3,他引:1  
The degree of contamination by heavy metals (arsenic, copper, lead, tin and zinc) in soil and transfer to plants has been studied. Specimens of plant species from five locations in an area of 10 × 10 m were sampled with their corresponding soils. Thirty six plant species including two shallow water aquatic plants were identified. Soil and plant specimens were analyzed by using inductively coupled plasma optical emission spectrometry. It was found that metal concentration in soil was highly variable while concentration of metals in plants directly depends on the concentration of metals it was rooted. Roots showed highest metal concentration followed by leaves, shoots and flowers. Bioconcentraion factor and translocation factor were calculated, representing Cyperus rotundus L. as a potential tin-hyperaccumulator plant, previously not reported in literature. Plant Species Imperata cylindrica, Lycopodium cernuum, Melastoma malabathricum, Mimosa pudica Linn, Nelumbo nucifera, Phragmites australis L., Pteris vittata L. and Salvinia molesta, were metal accumulator while Acacia podalyriaefolia G. Don, Bulb Vanisium, Dillenia reticulate King, Eugenia reinwardtiana, Evodia roxburghiania Hk. f. clarke, Gleichenia linearis, Grewia erythrocarpa Ridl., Manihot esculenta Crantz, Paspalum conjugatum Berguis, Passiflora suberosa, Saccharum officinarum, Stenochlaena palustris (Burm.) Bedd. and Vitis trifolia Linn. were tolerated plant species. All other studied plants were excluders. Identified plant species could be useful for revegetation and erosion control in metals contaminated ex-mining sites. Morphological changes such as reduction in size, change in color and deshaping have also been observed in plant species with high metal values.  相似文献   

2.
The heavy metal tolerance in corn (Zea mays L.) var. ‘Neelum’ was assessed at germination and seedling growth after having subjected it to different concentrations of CuSO4 and ZnSO4. Germination was not affected by any of the metal tested, whereas initial growth was strongly inhibited by increasing concentrations of ZnSO4. Seedlings developed toxicity symptoms in the presence of both metals but more chlorotic and necrotic regions were observed at varying levels of ZnSO4 than CuSO4. The metal accumulation was concentration dependent. Z. mays seedlings accumulated more copper in roots but greater contents of zinc in their shoots. On the basis of results presented here, it can be concluded that the cultivar of the species tested has shown a marked sensitivity to the presence of small amounts of metals present in the growth medium. The data support the assumption that metal sensitivity is probably due to strong tendency of the species to accumulate them. This justifies that the corn variety ‘Neelum’ is not suitable for the cultivation under situations where water and soil suffer from occasional and/ or transitory metal pollution.  相似文献   

3.
Plant species that accumulate high levels of metals in proportion to the metal content in the soil are of considerable interest in biogeochemical and biogeobotanical prospecting. This study was aimed at investigating copper and nickel accumulation in the plants Helichrysum candolleanum and Blepharis diversispina, to assess their potential use as mineral indicators in biogeochemical prospecting. Soils and plants were collected from copper–nickel mineralised areas in Botswana. Analyses of the soils and the respective plant parts (roots, stem, leaves and flowers) were carried out using ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS), which allowed rapid determination of copper and nickel in small amounts of the samples.The metal concentration in the soil was in the range ≈ 40 μg/g–4% (w/w) for Cu and ≈ 60 μg/g–0.3% (w/w) for Ni. The concentration ranges of the elements in the plant parts were ≈ 6 μg/g–0.2% Cu and ≈ 3–210 μg/g Ni. At high soil metal content (greater than 2.5% (w/w) Cu and 0.1% (w/w) Ni), high levels of both nickel and copper were found in the shoots (leaves and flowers) of H. candolleanum. Concentrations as high as 0.2% (w/w) Cu were found in the leaves and flowers of H. candolleanum, indicating hyperaccumulation for this plant. For B. diversispina, the metal concentrations did not exceed 100 μg/g for any plant part, for both metals. Both plant species tolerate high concentrations of metals and should therefore be categorized as metallophytes. In order to evaluate metal translocation from the soil to the shoots, metal leaf transfer coefficients (ratio of metal concentration in the leaf to metal concentration in the soil) were calculated. Our data suggest that the two plant species have different metal uptake and transport mechanisms, which needs to be investigated further. The present work also suggests that H. candolleanum may be used as a copper/nickel indicator plant in biogeochemical or biogeobotanical prospecting.  相似文献   

4.
The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.  相似文献   

5.
A field study was carried out to evaluate long-term heavy metal accumulation in the top 20 cm of a Tunisian clayey loam soil amended for four consecutive years with municipal solid waste compost at three levels (0, 40 and 80 t/ha/y). Heavy metals uptake and translocation within wheat plants grown on these soils were also investigated. Compared to untreated soils, compost-amended soils showed significant increases in the content of all measured metals: cadmium, chromium, copper, nickel, lead and zinc in the last three years, especially for plots amended with municipal solid waste compost at 80 t/ha/y. Wheat plants grown on compost-amended soils showed a general increase in metal uptake and translocation, especially for chromium and nickel. This heavy metal uptake was about three folds greater in plots amended at 80 t/ha/y as compared to plots amended at 40 t/ha/y. At the end of the experimental period, the diluting effect resulting from enhanced growth rates of wheat plants due to successive compost applications resulted in lower concentrations in the plants (grain part) grown on treated plots. On the other hand, chromium and nickel were less mobile in the aerial part of wheat plants and were accumulated essentially in root tissues. Plant/soil transfer coefficients for compost-amended treatments were higher than threshold range reported in the literature, indicating that there was an important load/transfer of metal ions from soils to wheat plants.  相似文献   

6.
Cadmium (Cd) is a highly toxic heavy metal and its presence in soil is of great concern due to the danger of its entry into the food chain. Among many others, proper plant nutrition is an economic and practicable strategy for minimizing the damage to plants from Cd and to decrease Cd accumulation in edible plant parts. The study was carried out to compare the effectiveness of soil and foliar applications of zinc (Zn) to minimize Cd accumulation in wheat grains. The results revealed that the exposure of plants to Cd decreased plant growth and increased Cd concentration in the shoots and grains of wheat, when compared with unexposed plants. Foliar application of 0.3 % zinc sulfate solution effectively decreased Cd concentration in wheat grains. Foliar application of Zn at a suitable concentration can effectively ameliorate the adverse effects of Cd exposure and decrease the grain Cd concentration of wheat grown in Cd-contaminated soil.  相似文献   

7.
The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato (Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal contaminated soil. Further research work on in situ toxicity test will be necessary in order to identify the most resistive variety on this particular type of contaminated site.  相似文献   

8.
根际环境重金属地球化学行为及其生物有效性研究进展   总被引:16,自引:1,他引:16  
根际是土壤或滨岸沉积物中受植物根系及其生长活动影响的微域环境 ,具有特殊的物理、化学和生物性质 ,影响了重金属在根际环境中的分布、累积和生物有效性。从重金属在根际环境的分布与累积、地球化学赋存形态、生物有效性以及影响重金属根际行为和生物有效性的主要因素(温度、Eh和溶解氧、p H、根系分泌物、微生物 )、重金属根际吸收、富集、排斥和固定过程的调控、重金属耐性植物的筛选和培养 6个方面概述了近 1 0年来国内外在根际环境重金属地球化学行为及其生物有效性方面的主要研究进展 ,并指出了其存在问题以及今后的努力方向。  相似文献   

9.
The spatial variability of soil heavy metals in conventional and organic greenhouse vegetable production (CGVP and OGVP) systems can reveal the influence of different farming activities on their accumulation and plant uptake. This provides important basic data for soil utilization and pollution risk assessment. Based on horizontal and vertical spatial analysis, this paper presents the spatial variability and accumulation of soil heavy metals. The effects on plant uptake and factors influencing heavy metal accumulation are presented using the two typical greenhouse vegetable sites in Nanjing City, China as examples. Results showed that different greenhouse vegetable production systems had their own dominant heavy metal accumulation, specifically, Hg and Pb in CGVP system and Cd in OGVP system. The spatial analysis showed that horizontally, distribution of soil properties and heavy metal concentrations in the two sites showed decreases from specific regions to the periphery for organic matter (OM), Cd, Cu, Hg, Pb, and Zn in CGVP and OM, As, Cd, Cu, Hg, Pb, and Zn in OGVP. Vertically, soil properties and heavy metals mainly vary in the topsoil. The key factor for the accumulation was excess fertilizer input. Variation of soil properties and the accumulation of soil heavy metals significantly influenced heavy metal uptake by plants. However, accumulation risk varied according to different heavy metals and different plant species. Environmental management of these two kinds of production systems should pay more attention to fertilizer application, plant selection, and soil properties.  相似文献   

10.
The effects of humic acid (HA) on heavy metal uptake by herbaceous plants in soil simultaneously contaminated with heavy metals and petroleum hydrocarbons were investigated. The results showed that HA reduced readily soluble and exchangeable forms of heavy metals in the contaminated soil but increased their plant-available forms. Potential bioavailability and leachability factors became larger than 1 after adding HA to the soil, except for those of Ni, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Furthermore, HA increased the accumulation of Pb, Cu, Cd, and Ni in the shoots and roots of selected plants. The greatest increase in the accumulation of heavy metals was 264.7 % in the shoot of Festuca arundinacea, with the bioconcentration factor (BCF) increasing from 0.30 to 1.10. Humic acid also increased the BCFs of the roots of Brassica campestris for Ni and Pb. These results suggest that HA amendment could enhance plant uptake of heavy metals, while concurrently reducing heavy metal leachability and preventing subsurface contamination, even in soils simultaneously contaminated with petroleum hydrocarbons.  相似文献   

11.
Screening out plants that are hyper-tolerant to certain heavy metals plays a fundamental role in remediation of mine tailing. In this study, nine dominant plant species growing on lead–zinc mine tailing and their corresponding non-mining ecotypes were investigated for their potential phytostabilization of lead. Lead concentration in roots of these plants was higher than in shoots, and the highest concentrations of lead were found in Athyrium wardii: 15542 and 10720 mg kg−1 in the early growth stage (May) and vigorous growth stage (August) respectively, which were 426 and 455 times higher than those of the non-mining ecotypes. Because of poor lead translocation ability, lead accumulation in roots reached as high as 42 mg per plant. Available lead in the rhizosphere soils of A. wardii was 310 mg kg−1, which was 17 times higher than that of the non-rhizosphere soil. Lead concentrations of roots for the nine mining ecotypes were positively correlated with available lead in the rhizosphere soils, whereas a negative correlation was observed in the non-mining ecotypes. These results suggest that A. wardii was the most promising candidate among the tested species for lead accumulation in roots, and it could be used for phytostabilization in lead polluted soils.  相似文献   

12.
Contaminated soils and mine tailings pose major environmental and agricultural problems worldwide. These problems may be partially solved by an emerging new technology: phytoremediation. This technique uses plants to extract soil contaminants from the ground. Thlaspi caerulescens is known to accumulate in their tissues several heavy metals from soil and aerial deposition. This study was conducted to screen plants growing on a contaminated site to determine their potential for metal accumulation. Seeds of T. caerulescens metallicolous have been collected in the vicinity of F.T. Laurent le Minier in the Pb–Zn mining district of les Malines (North of Montpellier, Southern France), and seeds of T. caerulescens non-metallicolous were sampled on Larzac Plateau (North of Montpellier, Southern France). Soil substrates were collected from a mine site of Mibladen and Zaida (West, Morroco). Cultivated plant and surface soil samples were analyzed for zinc, lead, and cadmium concentrations by inductively coupled plasma mass spectrometry. A non-metallicolous (NM) ecotype of T. caerulescens and a metallicolous (M) ecotype are compared for Pb, Cd, and Zn accumulation in shoot and root in five metal-contaminated soils and one uncontaminated soil. The growth of individuals from uncontaminated soil was greater than that of individuals from metal-contaminated soils. The NM populations had markedly higher root/shoot ratio compared to M populations. The results indicate that both ecotypes of T. caerulescens are highly tolerant of zinc and Cd. Ecotype NM had constitutively higher Zn uptake capacity than the M ecotype. T. caerulescens species accumulate higher amount of Zn and Cd in their tissues in polluted soil and, in both of the two ecotypes, the root Pb concentrations were much greater than those of the shoot Pb contents. From both uncontaminated and metal-contaminated soils, we conclude that T. caerulescens are interesting material for phytoremediation of zinc and cadmium.  相似文献   

13.
Phytoremediation is increasingly receiving attention as a cost effective technique that uses plants to remediate contaminants from wastewater, soil and sediments. In this study, the ability of Typha domingensis to uptake heavy metals as well as its potential application for phytoremediation was assessed. Pollutant elements concentrations were measured in samples of wastewater, sediments and Typha domingensis collected from industrial wastewater ponds, El-Sadat city, Egypt. This study specifically focused on the capacity of Typha domingensis to absorb and accumulate aluminum, iron, zinc and lead. Results indicated that Typha domingensis was capable of accumulating the heavy metal ions preferentially from wastewater than from sediments. The accumulation of metals in plant organs attained the highest values in roots, rhizomes and old leaves. Rhizofiltration was found to be the best mechanism to explain Typha domingensis phytoremediation capability.  相似文献   

14.
Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth and to discuss in particular the potential hazard to soils and plants according to the characteristics of heavy metal accumulation and migration when FA and SS are used as the amendments of calcific soil in a limestone mining area. The results showed that the application of FA-SS mixture is capable of accelerating the growth of plants and improving the biomass production at either 1:1 or 1:2 FA-SS mixture:soil(w/w).The highest yields were obtained at 1:1(w/w)mixing ratio.When compared with the Element Background Values of Soils in China,the analysis on heavy metals indicated that the contents of Pb,Cr,Hg,Cd,As,Ni,Cu and Zn in the amended soils came up to the second-class environmental quality standards,only Hg and Cd showed significant accumulation.At the same time, though the metal concentrations in roots were higher than those for the control,the concentrations except Cu,Zn in shoots were lower.And all the heavy metal contents in the plants were substantially lower than the toxicity limits. The results indicated that the combined use of FA and SS at a rational rate of application should pose no danger to both soil and food chain based on the characteristics of the FS and SS,heavy metals and calcific soil.  相似文献   

15.
The impact of waste disposal on trace metal contamination was investigated in eleven wetlands in the Lake Victoria Basin. Samples of soil, water and plants were analysed for total Zn, Cu, Pb and Ni concentrations using flame atomic absorption spectrophotometry. The trace metal concentrations in soil were the highest in Katanga wetland with the highest mean concentrations of 387.5±86.5 mg/kg Zn, 171.5±36.2 mg/kg Pb, 51.20±6.69 mg/kg Cu and 21.33±2.23 mg/kg Ni compared to the lowest levels observed at Butabika (30.7±3.2 mg/kg Zn, 15.3±1.7 mg/kg Pb, 12.77±1.35 mg/kg Cu and 6.97±1.49 mg/kg Ni). Katanga receives waste from multiple industrial sources including a major referral city hospital while Butabika is a former solid waste dumpsite. Wetland soil near a copper smelter had a Cu concentration of 5936.3±56.2 mg/kg. Trace metal concentrations in industrial effluents were above international limits for irrigation water with the highest concentrations of 357,000 μg/L Cu and 1480 μg/L Zn at a Cu smelter and 5600 μg/L Pb at a battery assembling facility compared to the lowest of 50 μg/L Cu and 50 μg/L Zn in water discharged from Wakaliga dumpsite. Uptake of trace metals from soil differed from plant to plant and site to site. Higher levels of trace metals accumulated in the root rather than in the rhizome and the least amount was in the leaf. The study identifies industry as a potential source of trace metal contamination of water and the environment pent-up need for policy intervention in industrial waste management.  相似文献   

16.
Physiological responses and metal accumulation in Vallisneria spiralis L. exposed to copper and cadmium contaminated sediment were examined at different metal concentrations and the influence of humic acids on copper and cadmium accumulation was also studied. The plants of V. spiralis accumulated high amount of copper and cadmium. The maximum accumulation of 396 and 114 mg kg−1 DW copper were found in the roots and shoots, respectively, at 614 mg kg−1 DW after 21 days’ copper exposure; they were 63.8 and 48.0 mg kg−1 DW for cadmium at 88.69 mg kg−1 DW. The plants showed decrease in chlorophyll content with the increasing concentration of copper/cadmium in sediment. With addition of humic acids from 3.09 to 7.89 g kg−1 DW, both copper and cadmium accumulation in V. spiralis were significantly inhibited (p < 0.01). The cadmium concentrations of roots and shoots of plant decreased 26.4–50.3 and 14.3–33.0% under cadmium treatments, respectively; copper accumulation decreased much more with 44.0–77.0 and 35.0–62.7%, respectively. It was concluded that V. spiralis appeared to be an ideal candidate for the phytoremediation of copper and cadmium polluted sediments, and humic acids had an important role in regulating copper and cadmium bioavailability and toxicity in sediments.  相似文献   

17.
A pot experiment was conducted to investigate the influence of elemental sulfur, gypsum and chelating agent (Ethylenediaminetetraacetic acid) on copper, zinc, nickel, cadmium, chromium and lead uptake by Brassica juncea from sewage sludge. Addition of sulphur acidified the sludge, which caused the pH decrease to 5.4 with an initial pH 6.7. The shoot and root biomass were increased with sulfur addition, while decreased with Ethylenediaminetetraacetic acid addition. Applications of Ethylenediaminetetraacetic acid and sulfur resulted in a considerable increase in copper and lead concentrations in the plant. The highest root concentration of copper obtained to be 110?mg/kg?dw at Ethylenediaminetetraacetic acid treatment. For sulfur treatment, lead concentrations in shoots indicated almost high concentrations 77?mg/kg, about twofold increases relative to roots (34?mg/kg). The Transportation Index of all studied metals were quite low (TI?<?0.5), whereas the Bioaccumulation Factor values were much higher, varied from 0.01 to 9.67. Furthermore, the plant showed better Bioaccumulation Factor for copper and lead metals in both shoot and root. The efficiency to remove copper and lead from sludge is high in this plant. As a result, elemental sulfur will be effective amendment for phytoextraction of heavy metals from sewage sludge.  相似文献   

18.
Heavy metal concentrations in samples collected from the London 2012 Olympic Village were determined using a three-step sequential extraction and a rapid extraction method. Metal toxicity was measured by employing the Microtox? solid phase analysis. Both extraction methods produced comparable results (p?=?0.996), but the rapid method produced higher readings. A number of heavy metals were detected using the two extraction methods, including aluminum, arsenic, cadmium, chromium, copper, iron, nickel, lead and zinc; beryllium, molybdenum, niobium and titanium were also found in low concentration ranging between 0.16 and 27.10?mg/kg in the total acid digestion. The total metal levels in all the soil samples were within the UK Soil Guideline Value (SGV) except for lead which ranged between 62.9 and 776.2?mg/kg. The 30?min EC50 of different soil fractions was 2?C5.8?g/L. In the absence of any of heavy metals in the SGV, the Dutch Guideline values were referred. Mathematical models for a number of metals were generated based on the changes in EC50 values between each (F1, F2 and F3) soil fractions and the initial toxicity in the non-fractionated samples. The resulting models produced good R2 values (>96%) for predicting the change in toxicity of lead, cadmium, zinc and copper by measuring their changes in concentrations. These models could substantially reduce the time requires to determine the toxicity in the samples; they would be a useful tool in the clean up process where monitoring of metal toxicity is required.  相似文献   

19.
The generation of electricity has been identified as one of the main pollutant activities, and some studies have established an increment of heavy metals in soil in the areas surrounding these plants. The aim of this study was to evaluate the soil concentrations of heavy metals in the zone surrounding a thermoelectric power in Mexico. Thirty-two top soil samples (0–5 cm) were collected; additionally, four depth profiles (1 m) were investigated. Median concentrations for chromium, vanadium, nickel, mercury, and cadmium were 47, 47, 73, 0.02, and 0.01 mg/kg, respectively. Higher Cr, Ni, and V concentrations were observed in the soil depth profiles located closer to the plant in comparison with the concentrations found in the soil depth profile located further away from the plant; these results may indicate a possible accumulation of these metals. The geoaccumulation index results indicated that most of the sites were in the classifications of unpolluted and unpolluted to moderately polluted (classes 1 and 2). The statistical results showed that downwind of the plant in relation to the prevailing winds, there was a strong correlation between soil concentrations of chromium, copper, nickel, and vanadium. Based on the results of this study, it can be concluded that the use of fuel oil at the thermoelectric plant contributed to the accumulation of vanadium and nickel in the soil of the surrounding areas, as well as chromium and copper.  相似文献   

20.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号