首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
The Ranger Uranium Mine located in the Alligator Rivers Region of the Northern Territory lies in the tropical zone and has an annual wet-dry monsoonal climate. Following the commencement of the wet season, runoff from the waste rock dump accumulates in a retention pond (RP4). This water is permitted to discharge to the nearby Magela Creek once minimum flow of 5 m3/sec is reached and following filling of the pond. The discharge proceeds via a channel, experimental wetland and a backflow billabong (Djalkmarra Billabong) which acts as a natural wetland filter and flows out to Magela Creek.This study examines monitoring data for water releases over 3 wet seasons. I wet season with no release and 4 dry seasons. The monitoring data comprised electrical conductivity (EC). pH, Na, K. Ca, Mg. HCO3 SO2−4, Cl and U (total or filtered, < 0.45 μm). Some ICP-MS scans of trace elements were also undertaken with particular reference being made to Re and U.Specific features of the sequence of water accumulation, release and reconstitution of Djalkmarra Billabong are able to show that U is effectively removed from solution, from about 50 ppb down to < 1 ppb. Soluble salts may remain in the water column and are removed by dilution following discharge to Magela Creek. Sediment levels show no increase in U concentration with time.The pH of the billabong water during releases (6.0–6.6) suggests that cationic forms of U, such as (UO2)3 (OH)5, predominate, favouring adsorption on to the humic-rich sediments of the natural wetland. The application of this principle enables U to be removed efficiently from waste water and to be contained within the mine lease.  相似文献   

2.
Anomalous Pb isotope ratios measured by Inductively Coupled Plasma Mass Spectrometry in terrigenous marine sediments (<63 μm fraction) from the Gulf of Carpentaria originated from depositional mixing of clay/silt with average modern crustal Pb isotope ratios and detrital monazite with high 208Pb/206Pb and low 207Pb/206Pb. This interpretation is supported by strong correlations between Pb isotope ratio and Th, U and light rare‐earth element concentrations in the sediments as well as by monazite compositional data. A likely source of the detrital monazite is the western portion of the Georgetown Inlier of mainly Proterozoic S‐type granitic rocks. A clear distinction between Pb isotope ratios in sediments deposited from the Norman and Bynoe Rivers in the southeast Gulf of Carpentaria and the persistence of catchment‐specific Pb isotope ratios 45 km offshore suggest that Pb isotope data are useful in tracing the provenance of terrigenous offshore sediments when the source rocks of catchments show sufficient chemical and/or mineralogical variation.  相似文献   

3.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

4.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration and isotopic composition of Pb in archaeological human and animal skeletal remains, soil from a village site of the Omaha tribe (U.S.A.) and cosmetic pigments.Lead concentrations in human bones from the Omaha tribe vary between 4.8 and 2570 μg/g, with younger people having the highest concentrations. Lead concentrations in animal bones from an Omaha village vary between 0.6 and 3.7 μg/g, and those of three soil samples range between 18 and 21 μg/g. Lead concentrations found in human bones from Anasazi (Utah, U.S.A.) and Alta (Peru) populations vary between 0.7 and 3.2 μg/g.Isotope ratios of a reagent grade Pb(NO3)2 solutions were measured by thermal ionization mass spectrometry (TIMS), as well as by ICP-MS to provide laboratory reference materials. The accuracy of the ICP-MS measurements relative to TIMS for the standard solution were found to be within 0.02–0.31% for206Pb/204Pb, 0.02–0.55% for207Pb/204Pb, and 0.16–0.56% for208Pb/204Pb. The precision of measurements on artifacts was 0.42–0.65% for206Pb/204Pb and 0.41–0.62% for207Pb/204Pb, whereas the precision for the same ratios for the bones was 0.85–1.8 and 0.82–1.67%, respectively. For the cosmetic lead-bearing pigments, a precision of 0.07–0.15% was found for both206Pb/204Pb and207Pb/204Pb ratios. Lead isotope ratios of artifacts give a radiogenic Pb signature, of which are close to signatures from PbZn mines of the central U.S. region. Lead isotope ratios of the pigments give non-radiogenic Pb signatures. Lead isotope ratios of the bones differ from those of the artifacts, and although similar in isotopic ratio to the pigments, they are more scattered, suggesting potential mixing of Pb from different regions.  相似文献   

5.
This study is a search for a genetic relationship between Pb sulphide ore and igneous rocks in the region of Mount Isa, Queensland. The approach involves derivation of Pb isotope initial ratios by the whole-rock isochron method, and comparison of the initial ratios (Pb206/Pb204, Pb207/Pb204 and Pb208/Pb204) with the isotopic composition of the ore Pb. Data are reported for four igneous units; Kalkadoon granodiorite, Kalkadoon adamellite, Sybella granite and Eastern Creek volcanics. The results display considerable scatter for each of the units, and reveal the effects of recent surficial loss of U. The positioning of isochrons is aided by previous Rb-Sr geochronological data wherever possible. Comparison of initial ratios and ore Pb suggests that none of the igneous rock units is co-genetic with the ore deposit. Both phases of the Sybella Granite are more radiogenic and are apparently younger than the ore Pb. The Kalkadoon Granite is possibly related to the ore through some post-emplacement process of extraction and transport of Pb (e.g. by erosion or by anatectic magma generation) to the present site of the orebodies.  相似文献   

6.
Isotope ratios of U and Pb were measured in two types of Mn nodules from the Cambrian Timna Formation, Israel. Type A nodules are mainly composed of pyrolusite and hollandite, with Mn, Ba, Pb and U concentrations of 30–60%, 0.2–2.5%, 0.2–1.0% and 500–3500 ppm, respectively, whereas type B nodules were formed by alteration of the former, and contain mainly coronadite, with Mn, Ba, Pb and U concentrations of 7–48%, 0.2–7%, 0.6–5% and 10–160 ppm, respectively. The isotopic composition of U and Pb was measured by MC-ICP-MS on Mn-rich solutions (up to 100 mg/L) without and with chromatographic separation. The values for the 207/206 and 208/206 ratios have been determined with precisions of up to 50 ppm and those of 206/204, 207/204 and 208/204 – up to 200 ppm. The values for the 234/238 ratios have been determined with precisions of 0.4–1%. The results of the separated and unseparated solutions were shown to be equal within the error. Thus there is no significant matrix effect while measuring U and Pb in Mn rich solution using the MC-ICP-MS.The isotopic composition of Pb and U support the distinction between the two types of Mn nodules. Type A nodules have a wide range of 206Pb/204Pb ratios (18.278–19.776), and an almost constant ratio of 208Pb/204Pb. In contrast, type B nodules have almost constant 206Pb/204Pb ratios and a wide range of 208Pb/204Pb ratios (37.986–38.079). Type A nodules form a linear array on a 207Pb/204Pb vs 206Pb/204Pb diagram, while type B nodules form a tight group characterized by lower Pb isotope ratios that slightly deviate from the type A array. The 234U/238U ratio differs between the two types of nodules; type A nodules exhibit a uniform and close to equilibrium 234U/238U ratio while type B nodules show a wide range of 234U/238U ratios above and below the equilibrium value. The isotopic composition of Pb in type A nodules might reflect Pb contributions from plutonic rock weathering, exposed at the time of deposition or later, to the Cambrian sea. These nodules have remained unaffected by processes that occurred since the Cambrian. The higher 208Pb/204Pb values of type B indicate that these nodules were formed from a Th-enriched solution probably during epigenetic processes which occurred also during the last 1 Ma.Thus the two isotopic systems of U and Pb can record formation, leaching and redeposition of Mn ores.  相似文献   

7.
Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small U deposits around Mount Isa and may also suggest a relationship between U mineralization and regional Cu mobilization during the Isan orogeny. Our work suggests that non-conventional geochronometers should be used only if additional geological information and geochemical data (e.g., mineral chemistry, trace elements) are available to evaluate any resulting age calculations.  相似文献   

8.
Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km2), and analysed for Pb and three of the four naturally occurring Pb isotopes (206Pb, 207Pb and 208Pb) in a HNO3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct 206Pb/207Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the 206Pb/207Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the 206Pb/207Pb isotope ratio in the soil O horizon.  相似文献   

9.
《Applied Geochemistry》1997,12(1):75-81
The extent of vertical migration of anthropogenic Pb beneath a medieval smelting site in Derbyshire, U.K. has been estimated using the determination of total Pb concentrations and 206Pb/207Pb isotope ratio from samples taken down 6 m of drill core. Preliminary studies of total Pb concentrations established that the surface slag derived from the smelting contained up to 16% Pb and that the normal background levels in uncontaminated sandstone were 10±2 ppm. Sample analyses beneath the site revealed elevated Pb concentrations in fracture infill clays (270 ppm Pb) and sandstone (76–83 ppm Pb). Both are well above the background Pb concentration.Lead isotope analysis of the slag wastes, the underlying contaminated sandstone and fracture infill has shown that all 3 contain very similar isotope ratios for 206Pb/207Pb (1.1802–1.1820). However, matched control sandstone samples show that the background 206Pb/207Pb isotope ratio (1.1670 ± 0.003) is distinctly different. This would indicate that both the sandstone and fracture infill underlying the historical smelting site contain a substantial proportion of Pb that has been derived from the overlying contamination.The application of total Pb concentrations along the core and isotope analysis suggest that anthropogenically derived Pb from the smelting site (that was operated between 665 and 445 a BP) has migrated to a depth of 4.50 m. Assuming a uniform migration rate and a mean time of migration of 555 a, then the mean migration rate is estimated to be 8 ± 2 mm/a.The proportion of natural versus anthropogenic Pb in the samples has been estimated from small variations in the 206Pb/207Pb isotope ratio. If the slag is considered to contain 100% anthropogenic Pb and the uncontaminated sandstone considered to contain 100% natural Pb, the linear interpolation can be applied between the 2 end members of the isotope ratio. The use of this approach to the 206Pb/207Pb ratio measurements has shown that 88% of the Pb in the contaminated sandstone (i.e. 69 ppm from a mean total Pb concentration of 78.5 ppm) has been derived from the anthropogenic Pb at the surface. For the fracture infill sample taken at a depth of 4.50 m, and with a total Pb concentration of 270 ppm, the % of Pb that has been derived from the slag wastes is approximately 98% (equivalent to 265 ppm Pb). The remaining Pb in both these samples (9.4 and 5 ppm, respectively) is deduced to have originated from the natural background concentration of Pb in the sandstone.The closeness of these estimates to the measured background concentration, suggests that a simple two-source model of Pb contamination is valid for this site.  相似文献   

10.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

11.
The Pb isotopic compositions of coexisting plagioclase and sulfide from the Bushveld Complex were determined by laser ablation multi-collector ICPMS (LA MC-ICPMS). The samples are of the upper Critical Zone in the northeast corner of the Complex and were collected from drill core and underground mine exposures. All the rocks are fresh and exhibit no evidence for alteration, weathering, or disruption of the Pb isotope systematics subsequent to the initial cooling of the intrusion. Furthermore, individual plagioclase and sulfide crystals do not contain enough U to warrant correction for radiogenic in-growth. For these reasons, the measured Pb isotope ratios approximate the initial ones. For plagioclase, 207Pb/206Pb ranges from 0.98 to 1.02 and 208Pb/206Pb from 2.26 to 2.35. Low 207Pb/206Pb and 208Pb/206Pb ratios characterize grain boundaries and partially annealed microcracks, some of which contain minute fragments of sulfide and other phases, and this accounts for most, if not all, the heterogeneity exhibited by individual samples. Real compositional differences exist, however, in plagioclase from different lithologic layers. For example, plagioclase 207Pb/206Pb values vary from 1.004 in norite beneath the Merensky pyroxenite to 1.009 in the mineralized pyroxenite, and 0.997 in overlying norite. In most samples in which sulfide and plagioclase coexist, the sulfide 207Pb/206Pb ratio is lower and 208Pb/206Pb ratio higher than the corresponding ones in plagioclase. For example, in a mineralized Merensky reef sample, average sulfide 207Pb/206Pb and 208Pb/206Pb ratios are 0.993 and 2.313, respectively, while those in plagioclase are 1.000 and 2.292. In one sample, the sulfide is extremely heterogeneous, with 207Pb/206Pb and 208Pb/206Pb ratios as low as 0.84 and 2.12. In this particular sample, the compositions must represent an isolated occurrence of addition of a young Pb component.The array of sulfide and plagioclase compositions requires multiple sources of Pb at the time of crystallization or soon thereafter. The disequilibrium between plagioclase and sulfide implies that some of the Pb originated from the isotopically distinct country rocks and was introduced at temperatures at which the composition of sulfide but not plagioclase could be modified. Thus, Bushveld sulfide, and to some extent plagioclase, do not reliably record the initial Pb isotopic composition(s) of the parent magma(s).  相似文献   

12.
On 25 April 1998 the tailings dam of the Aznalcóllar mine burst, a great quantity of pyrite waste sludge and acid water was spilled reaching the vicinity of the Doñana National Park. In surface and ground water samples taken a week after dam breaking, metals, trace elements and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) were analysed. In September 1998 a second sampling survey was carried out. The surface waters have a similar isotopic composition as the lead contained in the pyrite from the Aznalcóllar mine. The polluted groundwater of the Guadiamar aquifer also shows the influence of the mining origin of the lead. Lead isotope ratios (206Pb/207Pb and 208Pb/206Pb) in the groundwater of the Almonte-Marismas are very low and they differ clearly from the rest of groundwater samples. A further group of wells has a lead isotope composition intermediate between the Aznalcóllar mine and the atmospheric aerosols of the Iberian Peninsula.  相似文献   

13.
The Ranger 1 unconformity-related uranium deposit in the Northern Territory of Australia is one of the world's largest uranium deposits and has ranked in the top two Australian producers of uranium in recent years. Mineralisation at the Ranger, Jabiluka and other major unconformity-related deposits in the Alligator Rivers Uranium Field (ARUF) occurs in Paleoproterozoic metamorphic basement rocks immediately beneath the unconformity with the Paleo- to Mesoproterozoic McArthur Basin.The sites of uranium mineralisation and associated alteration at the Ranger 1 deposit (Number 3 orebody) were fundamentally controlled by reactivated shear zones that were initiated during the regional Nimbuwah tectonothermal event. The timing of shearing at medium metamorphic grade was constrained by ion microprobe U–Pb dating of zircons in two pegmatites, one weakly foliated (1867.0 ± 3.5 Ma) and another that is unfoliated and cuts the shear fabric (1862.8 ± 3.4 Ma). The younger age of ~ 1863 Ma represents the minimum age of D1 shearing during the Nimbuwah event at the Ranger 1 deposit (Number 3 orebody). Titanite within veins of amphibole-plagioclase-apatite yielded an ion microprobe U–Pb age of 1845.4 ± 4.2 Ma, which represents a previously unrecognised hydrothermal event in the ARUF. Based on previous data, retrograde hydrothermal alteration during D2 reactivation of D1 shear zones is interpreted to have occurred at ~ 1800 Ma during the regional Shoobridge tectonothermal event.Detailed paragenetic observations supported by whole-rock geochemical data from the Ranger 1 deposit (Number 3 orebody) reveal a sequence of post-D2 hydrothermal events, as follows. (1) Intense magnesium-rich chlorite alteration and brecciation, focussed within schists of the Upper Mine Sequence in the Cahill Formation. (2) Silicification of Lower Mine Sequence carbonate rock units and overlying schist units, comprising quartz ± Mg-foitite (tourmaline) ± muscovite ± pyrite ± marcasite, and rare uraninite (early U1). (3) Formation of main stage uranium ore and heterolithic breccias including clasts of olivine–phyric dolerite, with breccia matrix composed of uraninite (U1), Mg-chlorite ± Mg-foitite and minor pyrite and chalcopyrite. (4) A second generation of uraninite (U2) veinlets with disordered graphitic carbon and quartz of hydrothermal origin. (5) Late-stage veinlets of massive uraninite (U3). As inferred in a previous study and confirmed herein, olivine–phyric dolerite dykes at Ranger are mineralised and chloritised, and are geochemically similar to the regional Oenpelli Dolerite. A maximum age for uranium mineralisation at the Ranger 1 deposit is therefore set by the age of the Oenpelli Dolerite (~ 1723 Ma).In-situ ion microprobe U–Pb analysis of texturally oldest U1 uraninite yielded a discordia array with a 206Pb/238U-207Pb/235U upper intercept age of 1688 ± 46 Ma. The oldest individual ion microprobe 207Pb–206Pb age is 1684 ± 7 Ma whereas the oldest age determined by in-situ electron microprobe chemical dating of U1 uraninite is ~ 1646 Ma. Another sample containing both U1 and U2 uraninite yielded discordant data with a 206Pb/238U–207Pb/235U upper intercept age of 1421 ± 68 Ma. When the 207Pb/206Pb ages are considered the data are suggestive of U2 uraninite formation and possible resetting of the U1 age between ~ 1420 Ma and ~ 1040 Ma. All ion microprobe analyses of U1 and U2 uraninite indicate variable and possibly repeated lead loss. In contrast ion microprobe U–Pb dating of the third generation of uraninite (U3) yielded several near-concordant analyses and a 206Pb/238U–207Pb/235U upper intercept age of 474 ± 6 Ma. This age is supported by electron microprobe chemical ages of U3 uraninite between 515 Ma and 385 Ma.The new results constrain the timing of initial uranium mineralisation at the Ranger 1 deposit (Number 3 orebody) to the period ~ 1720 Ma to ~ 1680 Ma, which just overlaps with a previous U–Pb age of 1737 ± 20 Ma for uraninite-rich whole-rock samples. Our results are consistent with individual laser-ICPMS 207Pb/206Pb and chemical ages of uraninite as old as 1690–1680 Ma reported from other deposits and prospects in the ARUF.Whole-rock geochemical data in this study of the Ranger 1 deposit (Number 3 orebody) and in other studies in the ARUF demonstrate that zones of intense chloritisation associated with uranium mineralisation experienced large metasomatic gains of Mg, U, Co, Ni, Cu and S and losses of Si, Na, Ca, Sr, Ba, K, Rb, Y and the light REE. More broadly in the ARUF, a regionally extensive illite–hematite ± kaolinite-bearing ‘paleoregolith’ zone in basement beneath the McArthur Basin exhibits depletion of about half of its uranium as well as major losses in Na, Sr, Pb, Ba and minor losses of Mg. These features together with new petrographic observations suggest this zone is a regional sub-McArthur Basin alteration zone produced by interaction with diagenetic or hydrothermal fluids of primary basinal origin, rather than representing a low-temperature paleo-weathering zone before the deposition of the McArthur Basin, as previously suggested.Based on these results and a synthesis of previous work, a new multi-stage model is proposed for the Ranger 1 ore-forming mineral system that may apply to other major unconformity-related uranium deposits in the ARUF and which may be used for targeting new deposits in the region. As in most recent models, oxidised diagenetic brines within the McArthur Basin are envisaged as crucial in mobilising uranium. However, a different architecture of fluid flow is proposed involving the sub-unconformity regional basement alteration zone as a preferential source of leached uranium. Possibly driven by convection during regional magmatism at ~ 1725–1705 Ma, oxidised basinal brines were drawn downwards and laterally through fault networks and fractures in the regional sub-unconformity alteration zone, leaching uranium from hematite-altered basement rocks. Simultaneously within deeper and lateral parts of the hydrothermal system, Mg-metasomatism produced chloritic alteration and brines with increased acidity and silica content (from the desilicification of the basement rock), analogous to processes described in sub-seafloor hydrothermal systems. Silicification occurred locally (e.g., Ranger deposit) within upflow zones of convective systems due to decreases in temperature and/or pressure of the brines and/or CO2 generation during carbonate dissolution. Interruptions to convection during transient regional extensional or strike-slip tectonic events resulted in generalised lateral and downwards flow of fluids from the McArthur Basin through deepened zones of sub-unconformity alteration, transferring leached uranium into reactivated shear zones within the basement. The main stage of uraninite precipitation at the Ranger deposit and elsewhere in the ARUF is proposed to have occurred between ~ 1720 Ma and ~ 1680 Ma as a result of reduction of oxidised and evolved basin-derived ore fluids during reaction with pre-existing Fe2 +-bearing minerals and/or mixing of the ore fluids with basement-reacted silica-rich brines.A second, volumetrically minor but locally high-grade, stage of uraninite mineralisation was associated with hydrothermal disordered carbon and quartz of presently unknown origin. Available data suggest formation between ~ 1420 Ma and ~ 1040 Ma. Almost a billion years later at ~ 475 Ma, fluids capable of mobilising uranium again resulted in uraninite (U3) deposition as sparse veinlets in the Ranger deposit, representing the first documentation of uranium mineralisation of this age in the region.  相似文献   

14.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

15.
We have developed new analytical procedures to measure precise and accurate 238U–206Pb and 235U–207Pb ages for young (~ 1 Ma) zircons using laser ablation‐ICP‐mass spectrometry. For young zircons, both careful correction for the background counts and analysis of very small Pb/U ratios (i.e., 206Pb/238U < 0.00016 and 207Pb/235U < 0.0001 for 1 Ma zircons) are highly desired. For the correction of the background, the contribution of the background signal intensities for the analytes, especially for the residual signal intensities for 206Pb and 207Pb, was defined through laser ablation of synthesised zircons (ablation blank) containing negligible Pb. The measured signal intensities for 202Hg, 206Pb and 207Pb signals obtained by the ablation blank were slightly higher than those obtained by data acquisition without laser ablation (gas blank). For the wider dynamic range measurements on Pb/U ratios, an attenuator device for the ion detection system was employed to extend the capability to monitor high‐intensity signals (i.e., > 3 Mcps). Through the attenuator device, the ion currents were reduced to 1/450 of the signal intensity without the attenuator. Because the switching time for the attenuator was shorter than 1 ms, signal intensities for only specific isotopes could be reduced. With attenuation of the 238U signal, counting statistics on 206Pb and 207Pb isotopes could be improved and counting loss on the 238U signal could be minimised. To demonstrate the reliability of this new analytical technique, 238U–206Pb and 235U–207Pb ages for three young zircon samples (collected from Osaka Group Pink Volcanic Ash, Kirigamine and Bishop Tuff) were measured. The data presented here demonstrate clearly that the present technique could become a major analytical tool for in situ U–Pb age determination of young zircons (~ 1 Ma).  相似文献   

16.
The redox-sensitive geochemical behavior of uranium permits the use of Th/U ratios as a geochemical proxy for the oxidation state of the atmosphere during deposition. Due to the effects of post-depositional uranium mobility on Th/U ratios during events involving oxygenated fluids, direct measurements of Th/U ratios are often misleading even for drill core samples. Because both of these elements radioactively decay and produce lead isotopes, the Pb isotope composition may reflect the depositional Th/U ratio, although the Th/U ratios induced by changes shortly after deposition may not be distinguished from the true depositional Th/U ratios. In order to effectively evaluate the time-integrated Th/U ratio (κa), values for the initial depositional Pb isotope composition must be determined or accepted from the models for the whole Earth.While the timing for the rise of atmospheric oxygen is reasonably well constrained now, its effect on continental weathering and ocean redox state remains poorly constrained and debated. The ca. 2.15 Ga Sengoma Argillite Formation of Botswana contains organic-rich shales deposited during the Great Oxidation Event. The slope of the 207Pb/204Pb–206Pb/204Pb array of shales from the Sengoma Argillite Formation corresponds to a Pb–Pb age that is within analytical error of the depositional age and is, therefore, inferred to be the time by which the time-integrated thorogenic and uranogenic lead growth started. The time-integrated lead growth corresponds to an average κa of 2.63 (± 0.62, 1σ) for the organic-rich shales of the Sengoma Argillite Formation. This is lower than Th/U ratios measured in Archean shale suites or estimated for the Archean–Proterozoic average upper continental crust [Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.], which indicates that these samples were enriched in uranium with respect to thorium (and perhaps lead) at the time of deposition. In the modern ocean, sediments are enriched in uranium under reducing conditions by reduction of the water-soluble uranyl ion, which is delivered to the ocean by oxidative weathering of continental crust. To evaluate the potential mobility of Th, U, and Pb during post-depositional processes, the concentrations of the rare earth elements (REE) were also determined. Interelement ratios of the largely immobile REE (in this study, La/Nd and Gd/Er) can be used as a proxy for the Th/U ratio, as the geochemical behavior of the lanthanide and actinide elements is similar under a variety of conditions. Furthermore, close similarity in the chondrite-normalized REE patterns and small range in La/Nd and Gd/Er ratios in studied samples indicate that variations in κa values are not likely to have been controlled by mixing of one or more REE-, Th-, and U-rich heavy minerals from the multiple detrital sources. Our study of shales from the ca. 2.15 Ga Sengoma Argillite Formation indicates that decoupling of U from Th, most likely related to the oxidative continental weathering, began by 2.15 Ga, at the latest.  相似文献   

17.
U-Pb systems were examined in samples (ranging from 4 to 10 cm3 in volume) of ore material taken from along a 3.5-m profile across a zone of U mineralization exposed in an underground mine at the Strel’tsovskoe U deposit in eastern Transbaikalia. The behaviors of two isotopic U-Pb systems (238U-206Pb and 235U-207Pb) are principally different in all samples from our profile. While the individual samples are characterized by a vast scatter of their T(206Pb/238U) age values (from 112 to 717 Ma), the corresponding T(207Pb/235U) values vary much less significantly (from 127 to 142 Ma) and are generally close to the true age of the U mineralization. The main reason for the distortion of the U-Pb system is the long-lasting (for tens of million years) migration of intermediate decay products in the 238U-206Pb(RD238U) in the samples. This process resulted in the loss of RD238U from domains with high U concentrations and the subsequent accommodation of RD238U at sites with low U concentrations. The long-term effect of these opposite processes resulted in a deficit or excess of 206Pb as the final product of 238U decay. The loss or migration of RD238U are explained by the occurrence of pitchblende in association with U oxides that have higher Si and OH concentrations than those in the pitchblende and a higher +6U/+4U ratio. The finely dispersed character of the mineralization and the loose or metamict texture of the material are the principal prerequisites for RD238U loss and an excess of 206Pb in adjacent domains with low U concentrations. Domains with low U contents in the zone with U mineralization serve as geochemical barriers (because of sulfides contained in them) at which long-lived RD238U(226Ra, 210Po, 210Bi, and 210Pb) were accommodated and subsequently caused an excess of 206Pb. The 235U-207Pb system remained closed because of the much briefer lifetime of the 235U decay products. This may account for the significant discrepancies between the T(206Pb/238U) and T(207Pb/235U) age values. RD238U was most probably lost via the migration of radioisotopes at the middle part and end of the 238U family (starting with 226Ra). The heavy Th, Pa, and U radioisotopes (234Th, 234Pa, 234U, and 230Th) that occur closer to the beginning of 238U decay, before 226Ra, only relatively insignificantly participated in the process. Our results show that the loss and migration of RD238U are, under certain conditions, the main (or even the only) process responsible for the distortion of the U-Pb system.  相似文献   

18.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

19.
Annual growth rings of a common hardwood species, Picea abies L., were investigated as a potential archive of past atmospheric Pb pollution. Wide distribution of trees in terrestrial settings and straightforward chronology are two advantages of this potential geochemical archive, but several processes described in the literature may obscure the trends in past Pb deposition. These confounding factors include, e.g., radial post-depositional mobility of Pb in xylem, and ecosystem acidification leading to higher bioavailability of Pb. One- to five-year annual wood increments were analyzed for Pb concentrations and 206Pb/207Pb ratios at Jezeri (JEZ), Uhlirska (UHL) and Na Lizu (LIZ), three sites in the Czech Republic, differing in atmospheric Pb loads. Three to four trees per site were included in the study. Distinct Pb concentration maxima between 1960 and 1990 at the two heavily polluted sites (JEZ and UHL) coincided with historical Pb emissions known from inventories of industrial production. No Pb concentration maxima were found at one site, LIZ, situated in a national park 150 km from major pollution sources. Spruce tree rings from JEZ, located just 5 km from coal-burning power stations, contained a large proportion of coal-derived Pb (a high-206Pb/207Pb ratio of 1.19). A coal-related maximum in 206Pb/207Pb in JEZ tree rings was found using two different analytical techniques, laser-ablation multi-collector ICP MS, and single-collector sector-field ICP MS. In a three-isotope graph (206Pb/207Pb vs. 208Pb/207Pb), tree-ring data plotted into the field of ombrotrophic (i.e., rain-fed) peat bogs, suggesting negligible contribution of bedrock-derived Pb in the xylem. We concluded that none of the potential confounding factors played a major role at our sites. Annual growth rings of P. abies in Central Europe faithfully recorded historical changes in atmospheric Pb depositions.  相似文献   

20.
Systematic variations in the Cd and Pb isotope ratios in polluted topsoils surrounding the Jinding Pb–Zn mine in China were measured so that the sources of the metals could be traced. The average δ114/110Cd value and 206Pb/207Pb isotope ratio in background soils from the region were +0.41‰ and 1.1902, respectively, whereas the contaminated soil samples had different values, with the δ114/110Cd values varying between −0.59‰ and +0.33‰ and the 206Pb/207Pb isotope ratios varying between 1.1764 and 1.1896. We also measured the Cd and Pb isotopic compositions in oxide ores, sulfide ores, and slags, and found that binary mixing between ores and background soils could explain almost all of the variations in the Cd and Pb isotope ratios in the contaminated soils. This suggests that Cd and Pb pollution in the soils was mainly caused by the deposition of dust emitted during anthropogenic activities (mining and refining). The Pb and Cd isotope ratios clearly showed that contamination in soils in the northeastern part of the area was caused by surface mines and zinc smelters and their slagheaps, while contamination in soils in the southwestern part of the area also came from tailing ponds and underground mines. The main area of soil polluted by dust from Pb–Zn mining processes roughly extended for up to 5 km from the mine itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号