首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

2.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

3.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   

4.
Assessing the global C budget requires a better understanding of the effect of environmental factors on soil CO2 efflux from both experiments and theoretical research, especially in different desertified lands in the Qinghai–Tibet Plateau. Based on the enclosed chamber method, soil CO2 efflux in four different desertified lands and one control [alpine meadow (AM)] were measured in June, August and September, 2008, respectively. Soil CO2 efflux rates at the top, the middle, the bottom of a slope and the flat in front of the slope were obtained at Maduo County. The results showed that average daily soil CO2 efflux rates were 3.72, 2.65, 2.68, 0.59 and 0.37 g m−2 day−1 in the AM, lightly (LDL), moderately (MDL), severely (SDL) and very severely desertified lands (VSDL) during the growing season, respectively. Soil CO2 efflux decreased with the change of desertification. The response of soil CO2 efflux to environmental factors was adequately described by the linear model; models accounted for 76, 65, 72, 59 and 71% of the variability on soil CO2 efflux in the AM, LDL, MDL, SDL and VSDL, respectively. Any environmental factor, however, was insufficient to explain the soil CO2 efflux; the common influence could perfectly reflect soil CO2 efflux response to the desertification change.  相似文献   

5.
Recent studies of chemical weathering of andesitic-dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO3:Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6-106 t km−2 a−1), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1-55.4 t km−2 a−1) and associated CO2 consumption (190-1575 × 103 mol km−2 a−1) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic-dacitic terrains and that additional studies of these terrains are warranted.  相似文献   

6.
Combining analytical data from hot spring samples with thermodynamic calculations permits a quantitative assessment of the availability and ranking of various potential sources of inorganic chemical energy that may support microbial life in hydrothermal ecosystems. Yellowstone hot springs of diverse geochemical composition, ranging in pH from <2 to >9 were chosen for this study, and dozens of samples were collected during three field seasons. Field measurements of dissolved oxygen, nitrate, nitrite, total ammonia, total sulfide, alkalinity, and ferrous iron were combined with laboratory analyses of sulfate and other major ions from water samples, and carbon dioxide, hydrogen, methane, and carbon monoxide in gas samples to evaluate activity products for ∼300 coupled oxidation-reduction reactions. Comparison of activity products and independently calculated equilibrium constants leads to values of the chemical affinity for each of the reactions, which quantifies how far each reaction is from equilibrium. Affinities, in turn, show systematic behavior that is independent of temperature but can be correlated with pH of the hot springs as a proxy for the full spectrum of geochemical variability. Many affinities are slightly to somewhat dependent on pH, while others are dramatically influenced by changes in chemical composition. All reactions involving dissolved oxygen as the electron acceptor are potential energy sources in all hot spring samples collected, but the ranking of dominant electron donors changes from ferrous iron, and sulfur at high pH to carbon monoxide, hydrogen, and magnetite as pH decreases. There is a general trend of decreasing energy yields depending on electron acceptors that follows the sequence: O2(aq) > NO3 ≈ NO2 ≈ S > pyrite ≈ SO4−2 ≈ CO(g) ≈ CO2(g) at high pH, and O2(aq) ≈ magnetite > hematite ≈ goethite > NO3 ≈ NO2 ≈ S ≈ pyrite ≈ SO4−2 at low pH. Many reactions that are favorable sources of chemical energy at one set of geochemical conditions fail to provide energy at other conditions, and vice versa. This results in energy profiles supplied by geochemical processes that provide fundamentally different foundations for chemotrophic microbial communities as composition changes.  相似文献   

7.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

8.
Methane microseepage is the result of natural gas migration from subsurface hydrocarbon accumulations to the Earth’s surface, and it is quite common in commercial petroleum fields. While the role of microseepage as a pathfinder in petroleum exploration has been known for about 80 a, its significance as an atmospheric CH4 source has only recently been studied, and flux data are currently available only in the USA and Europe. With the aim of increasing the global data-set and better understanding flux magnitudes and variabilities, microseepage is now being extensively studied in China. A static flux chamber method was recently applied to study microseepage emissions into the atmosphere in four different sectors of the Yakela condensed gas field in Tarim Basin, Xinjiang, China, and specifically in: (a) a faulted sector, across the Luntai fault systems; (b) an oil–water interface sector, at the northern margin of the field; (c) an oil–gas interface sector, in the middle of the field; (d) an external area, outside the northern gas field boundaries. The results show that positive CH4 fluxes are pervasive in all sectors and therefore, only part of the CH4 migrating from the deep oil–gas reservoirs is consumed in the soil by methanotrophic oxidation. The intensity of gas seepage seems to be controlled by subsurface geologic settings and lateral variabilities of natural gas pressure in the condensed gas field. The highest CH4 fluxes, up to ∼14 mg m−2 d−1 (mean of 7.55 mg m−2 d−1) with higher spatial variability (standard deviation, σ: 2.58 mg m−2 d−1), occur in the Luntai fault sector. Merhane flux was lower in the oil–water area (mean of 0.53 mg m−2 d−1) and the external area (mean of 1.55 mg m−2 d−1), and at the intermediate level in the gas–oil sector (mean of 2.89 mg m−2 d−1). These values are consistent with microseepage data reported for petroleum basins in the USA and Europe. The build-up of methane concentration in the flux chambers is always coupled with an enrichment of 13C, from δ13C1 of −46‰ to −42.5‰ (VPDB), which demonstrates that seeping methane is thermogenic, as that occurring in the deep Yakela reservoir. Daily variations of microseepage are very low, with minima in the afternoon, corresponding to higher soil temperature (and higher methanotrophic consumption), and maxima in the early morning (when soil temperatures are lowest). A preliminary and rough estimate of the total amount of CH4 exhaled from the Yakela field is in the order of 102 tonnes a−1.  相似文献   

9.
The Narmada River in India is the largest west-flowing river into the Arabian Sea, draining through the Deccan Traps, one of the largest flood basalt provinces in the world. The fluvial geochemical characteristics and chemical weathering rates (CWR) for the mainstream and its major tributaries were determined using a composite dataset, which includes four phases of seasonal field (spot) samples (during 2003 and 2004) and a decade-long (1990-2000) fortnight time series (multiannual) data. Here, we demonstrate the influence of minor lithologies (carbonates and saline-alkaline soils) on basaltic signature, as reflected in sudden increases of Ca2+-Mg2+ and Na+ contents at many locations along the mainstream and in tributaries. Both spot and multiannual data corrected for non-geological contributions were used to calculate the CWR. The CWR for spot samples (CWRspot) vary between 25 and 63 ton km−2 year−1, showing a reasonable correspondence with the CWR estimated for multiannual data (CWRmulti) at most study locations. The weathering rates of silicate (SilWR), carbonate (CarbWR) and evaporite (Sal-AlkWR) have contributed ∼38-58, 28-45 and 8-23%, respectively to the CWRspot at different locations. The estimated SilWR (11-36 ton km−2 year−1) for the Narmada basin indicates that the previous studies on the North Deccan Rivers (Narmada-Tapti-Godavari) overestimated the silicate weathering rates and associated CO2 consumption rates. The average annual CO2 drawdown via silicate weathering calculated for the Narmada basin is ∼0.032 × 1012 moles year−1, suggesting that chemical weathering of the entire Deccan Trap basalts consumes approximately 2% (∼0.24 × 1012 moles) of the annual global CO2 drawdown. The present study also evaluates the influence of meteorological parameters (runoff and temperature) and physical weathering rates (PWR) in controlling the CWR at annual scale across the basin. The CWR and the SilWR show significant correlation with runoff and PWR. On the basis of observed wide temporal variations in the CWR and their close association with runoff, temperature and physical erosion, we propose that the CWR in the Narmada basin strongly depend on meteorological variability. At most locations, the total denudation rates (TDR) are dominated by physical erosion, whereas chemical weathering constitutes only a small part (<10%). Thus, the CWR to PWR ratio for the Narmada basin can be compared with high relief small river watersheds of Taiwan and New Zealand (1-5%) and large Himalayan Rivers such as the Brahmaputra and the Ganges (8-9%).  相似文献   

10.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

11.
The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 × 109 mol a−1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in δ13CTDIC (−21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 × 109 mol a−1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 × 109 mol a−1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 × 109 mol a−1), but present-day release of 5.8 × 109 mol a−1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (>200 mW m−2) and reaches extremely high values (up to 2700 mW m−2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.  相似文献   

12.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

13.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

14.
Measurements of the dissolution rate of diopside (r) were carried out as a function of the Gibbs free energy of the dissolution reaction (ΔGr) in a continuously stirred flow-through reactor at 90 °C and pH90 °C = 5.05. The overall relation between r and ΔGr was determined over a free energy range of −130.9 < ΔGr < −47.0 kJ mo1−1. The data define a highly non-linear, sigmoidal relation between r and ΔGr. At far-from-equilibrium conditions (ΔGr ? −76.2 kJ mo1−1), a rate plateau is observed. In this free energy range, the rates of dissolution are constant, independent of [Ca], [Mg] and [Si] concentrations, and independent of ΔGr. A sharp decrease of the dissolution rate (∼1 order of magnitude) occurs in the transition ΔGr region defined by −76.2 < ΔGr ? −61.5 kJ mo1−1. Dissolution closer to equilibrium (ΔGr > −61.5 kJ mo1−1) is characterised by a much weaker inverse dependence of the rates on ΔGr. Modeling the experimental rGr data with a simple classical transition state theory (TST) law as implemented in most available geochemical codes is found inappropriate. An evaluation of the consequences of the use of geochemical codes where the rGr relation is based on basic TST was carried out and applied to carbonation reactions of diopside, which, among other reactions with Ca- and Mg-bearing minerals, are considered as a promising process for the solid state sequestration of CO2 over long time spans. In order to take into account the actual experimental rGr relation in the geochemical code that we used, a new module has been developed. It reveals a dramatic overestimation of the carbonation rate when using a TST-based geochemical code. This points out that simulations of water-rock-CO2 interactions performed with classical geochemical codes should be evaluated with great caution.  相似文献   

15.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

16.
The nucleation and growth of CaCO3 phases from aqueous solutions with SO42−:CO32− ratios from 0 to 1.62 and a pH of ∼10.9 were studied experimentally in batch reactors at 25 °C. The mineralogy, morphology and composition of the precipitates were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and microanalyses. The solids recovered after short reaction times (5 min to 1 h) consisted of a mixture of calcite and vaterite, with a S content that linearly correlates with the SO42−:CO32− ratio in the aqueous solution. The solvent-mediated transformation of vaterite to calcite subsequently occurred. After 24 h of equilibration, calcite was the only phase present in the precipitate for aqueous solutions with SO42−:CO32− ? 1. For SO42−:CO32− > 1, vaterite persisted as a major phase for a longer time (>250 h for SO42−:CO32− = 1.62). To study the role of sulfate in stabilizing vaterite, we performed a molecular simulation of the substitution of sulfate for carbonate groups into the crystal structure of vaterite, aragonite and calcite. The results obtained show that the incorporation of small amounts (<3 mole%) of sulfate is energetically favorable in the vaterite structure, unfavorable in calcite and very unfavorable in aragonite. The computer modeling provided thermodynamic information, which, combined with kinetic arguments, allowed us to put forward a plausible explanation for the observed crystallization behavior.  相似文献   

17.
The Yarlung Tsangpo-Brahmaputra river drains a large portion of the Himalaya and southern Tibetan plateau, including the eastern Himalayan syntaxis, one of the most tectonically active regions on the globe. We measured the solute chemistry of 161 streams and major tributaries of the Tsangpo-Brahmaputra to examine the effect of tectonic, climatic, and geologic factors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern Tibet and the eastern syntaxis of the Himalaya, examine the major chemical weathering reactions in the tributaries of the Tsangpo-Brahmaputra, and determine the total weathering flux from carbonate and silicate weathering processes in this region. We show that high precipitation, rapid tectonic uplift, steep channel slopes, and high stream power generate high rates of chemical weathering in the eastern syntaxis. The total dissolved solids (TDS) flux from the this area is greater than 520 tons km−2 yr−1 and the silicate cation flux more than 34 tons km−2 yr−1. In total, chemical weathering in this area consumes 15.2 × 105 mol CO2 km−2 yr−1, which is twice the Brahmaputra average. These data show that 15-20% of the total CO2 consumption by silicate weathering in the Brahmaputra catchment is derived from only 4% of the total land area of the basin. Hot springs and evaporite weathering provide significant contributions to dissolved Na+ and Cl fluxes throughout southern Tibet, comprising more than 50% of all Na+ in some stream systems. Carbonate weathering generates 80-90% of all dissolved Ca2+ and Mg2+ cations in much of the Yarlung Tsangpo catchment.  相似文献   

18.
New He and C relative abundance, isotope and concentration results from nine geothermal locations situated along an 800-km transect of the North Anatolian Fault Zone (NAFZ), Turkey, that were monitored during the period November 2001–November 2004, are reported. The geothermal waters were collected every 3–6 months to study possible links between temporal geochemical variations and seismic activity along the NAFZ. At the nine sample locations, the He isotope ratios range from 0.24 to 2.3RA, δ13C values range from −4.5 to +5.8‰, and CO2/3He ratios range from 5 × 109 to 5 × 1014. The following geochemical observations are noted: (1) the highest 3He/4He ratios are found near the Galatean volcanic region, in the central section of the NAFZ, (2) at each of the nine sample locations, the 3He/4He ratios are generally constant; however, CO2/3He ratios and He contents both show one order of magnitude variability, and δ13C values show up to ∼4‰ variability, and (3) at all locations (except Re?adiye), δ13C values show positive correlations with CO2 contents. The results indicate that at least three processes are necessary to account for the geochemical variations: (1) binary mixing between crustal and mantle-derived volatiles can explain the general characteristics of 3He/4He ratios, δ13C values, and CO2/3He ratios at the nine sample locations; (2) preferential degassing of He from the geothermal waters is responsible for variations in CO2/3He values and He contents at each sample location; and (3) CO2 dissolution followed by calcite precipitation is responsible for variations in CO2 contents and δ13C values at most locations. For each of the geochemical parameters, anomalies are defined in the temporal record by values that fall outside two standard deviations of average values at each specific location. Geochemical anomalies that may be related to seismic activity are recorded on June 28, 2004 at Yalova, where a M = 4.2 earthquake occurred 43 days earlier at 15 km distance from the sample location, and on April 7, 2003 at Efteni, where a M = 4.0 earthquake occurred 44 days later at a distance of 12 km. At both locations, the sampling periods containing geochemical anomalies were preceded by an increase in M ? 3 earthquakes occurring within 60 days and less than 40 km distance.  相似文献   

19.
To investigate the influence of temperature and composition on the diffusivities of dissolved carbon dioxide and argon in silicate melts, diffusion experiments were performed at magmatic pressure and temperature conditions in (a) albite melts with excess Na2O (0-8.6 wt%) and a constant Si/Al ratio of 3, and (b) albite70quartz30 to jadeite melts with decreasing SiO2 content and a constant Na/Al ratio of 1. We obtained diffusion coefficients at 500 MPa and 1323-1673 K. In the fully polymerized system Ab70Qz30 - Jd, the change in composition only has a weak effect on bulk CO2 diffusivity, but Ar diffusivity increases clearly with decreasing SiO2 content. In the system Ab + Na2O, bulk CO2 and Ar diffusivity increase significantly with gradual depolymerisation. The relatively small change in composition on molar basis in the depolymerized system leads to a significantly larger change in diffusivities compared to the fully polymerized Ab70Qz30-Jd join. Within error, activation energies for bulk CO2 and Ar diffusion in both systems are identical with decreasing silica content (Ab + Na2O: 159 ± 25 kJ mol−1 for bulk CO2 and 130 ± 8 kJ mol−1 for Ar; Ab70Qz30-Jd: 163 ± 16 kJ mol−1 for bulk CO2 and 148 ± 15 kJ mol−1 for Ar) even though this results in depolymerisation in one system and not the other.Although there is a variation in CO2 speciation with changing composition as observed in quenched glasses, it has previously established that this is not a true representation of the species present in the melt, with the ratio of molecular CO2 to carbonate decreasing during quenching. Thus, diffusion coefficients for the individual CO2 species cannot be directly derived by measuring molecular CO2 and CO32- concentration-distance profiles in the glasses. To obtain diffusivities of individual CO2 species, we have made two assumptions that (1) inert Ar can be used as a proxy for molecular CO2 diffusion characteristics as shown by our previous work and (2) the diffusivity of CO32− can be calculated assuming it is identical to network forming components (Si4+ and Al3+). This is derived from viscosity data (Eyring eqn.) and suggests that CO32− diffusion would be several orders of magnitude slower than molecular CO2 diffusion.The systematics of measured bulk CO2 diffusivity rates and comparison with the Ar proxy all suggest that the faster molecular CO2 species is much more dominant in melts than measurements on resulting quenched glasses would suggest. This study has confirmed an observation of surprisingly consistent bulk CO2 diffusivity across a range of natural compositions were Ar diffusivity significantly increases. This is consistent with an actual increase in molecular CO2 mobility (similar to Ar) that is combined with an increase in the proportion of the slower carbonate in the melt.These results demonstrate that the CO2 diffusion and speciation model provides an insight into the transport processes in the melt and is promising and an alternative tool to in situ speciation measurements at magmatic conditions, which at the moment are technically extremely difficult. We present the first high pressure high temperature in situ MIR spectra of a CO2 bearing albitic glass/melt suggesting that molecular CO2 is a stable species at high temperature, which is qualitatively consistent with the modelled CO2 speciation data.  相似文献   

20.
From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ13C values varied from −8.9‰ to −19.4‰. The CO2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ13C values varied from −10.1‰ to −8.4‰ (avg.=-9.0‰). In contrast to ambient indoor and outdoor air, the concentrations of CO2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ13C values ranged from −24.8‰ to −17.7‰ (avg. = −21.8‰). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO2 gas. Collectively, the δ13C values of the indoor CO2 samples were linearly correlated with the reciprocal of CO2 concentration, exhibiting an intercept of −21.8‰, with r2 = 0.99 and p < 0.001 (n = 78). This high degree of linearity for CO2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (−21.8‰) with the average δ13C value for human-exhaled CO2 demonstrates simple mixing between two inputs: (1) outdoor CO2 introduced to the interior spaces by ventilation systems, and (2) CO2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO2 in the ambient air of the room) could be a reasonable estimate of the average δ13C value of the CO2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective “sample vessels” for collection of CO2 that can be used to determine the average proportions of C3 and C4-derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C4-derived C appears to have constituted ∼40% of the average diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号