首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The George Sound Paragneiss (GSP) represents a rare Permo-Triassic unit in Fiordland that occurs as a km-scale pillar to gabbroic and dioritic gneiss of c . 120 Ma Western Fiordland Orthogneiss (WFO). It is distinguished from Palaeozoic paragneiss common in western Fiordland (Deep Cove Gneiss) by SHRIMP and laser-ablation U–Pb ages as young as c . 190 Ma and 176Hf/177Lu >0.2828 for detrital zircon grains. The Mesozoic age of the GSP circumvents common ambiguity in the interpretation of Cretaceous v. Palaeozoic metamorphic assemblages in the Deep Cove Gneiss. A shallowly dipping S1 foliation is preserved in the GSP distal to the WFO, cut by 100 m scale migmatite contact zones. All units preserve a steeply dipping S2 foliation. S1 staurolite and sillimanite inclusions in the cores of metapelitic garnet grains distal to the WFO preserve evidence for prograde conditions of T  <   650 °C and P <  8 kbar. Contact aureole and S2 assemblages include Mg-rich, Ca-poor cores to garnet grains in metapelitic schist that reflect WFO emplacement at ≈760 °C and ≈6.5 kbar. S2 kyanite-bearing matrix assemblages and Ca-enriched garnet rims reflect ≈650 °C and ≈11 kbar. Poorly oriented muscovite–biotite intergrowths and rare paragonite reflect post-S2 high- P retrogression and cooling. Pseudosection modelling in NCKFMASH defines a high- P anti-clockwise P–T history for the GSP involving: (i) mid- P amphibolite facies conditions; preceding (ii) thermal metamorphism adjacent to the WFO; followed by (iii) burial to high- P and (iv) high- P cooling induced by tectonic juxtaposition of cooler country rock.  相似文献   

2.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

3.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   

4.
Ion microprobe dating of zircon and monazite from high-grade gneisses has been used to (1) determine the timing of metamorphism in the Western Province of New Zealand, and (2) constrain the age of the protoliths from which the metamorphic rocks were derived. The Western Province comprises Westland, where mainly upper crustal rocks are exposed, and Fiordland, where middle to lower crustal levels crop out. In Westland, the oldest recognisable metamorphic event occurred at 360–370 Ma, penecontemporaneously with intrusion of the mid-Palaeozoic Karamea Batholith (c. 375 Ma). Metamorphism took place under low-pressure/high-temperature conditions, resulting in upper-amphibolite sillimanite-grade metamorphism of Lower Palaeozoic pelites (Greenland Group). Orthogneisses of younger (Cretaceous) age formed during emplacement of the Rahu Suite granite intrusives (c. 110 Ma) and were derived from protoliths including Cretaceous Separation Point suite and Devonian Karamea suite granites. In Fiordland, high-grade paragneisses with Greenland Group zircon age patterns were metamorphosed (M1) to sillimanite grade at 360 Ma. Concomitant with crustal thickening and further granite emplacement, M1 mineral assemblages were overprinted by higher-pressure kyanite-grade metamorphism (M2) at 330 Ma. It remains unclear whether the M2 event in Fiordland was primarily due to tectonic burial, as suggested by regional recumbent isoclinal folding, or whether it was due to magmatic loading, in keeping with the significant volumes of granite magma intruded at higher structural levels in the formerly contiguous Westland region. Metamorphism in Fiordland accompanied and outlasted emplacement of the Western Fiordland Orthogneiss (WFO) at 110–125 Ma. The WFO equilibrated under granulite facies conditions, whereas cover rocks underwent more limited recrystallization except for high-strain shear zones where conditions of lower to middle amphibolite facies were met. The juxtaposition of Palaeozoic kyanite-grade rocks against Cretaceous WFO granulites resulted from late Mesozoic extensional deformation and development of metamorphic core complexes in the Western Province.  相似文献   

5.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   

6.
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20–25 km-thick, 125.3?±?1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3?±?1.2 Ma old, pre-MDC lattice dykes and 117.4?±?3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9–14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only?~?2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740–640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1?±?1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of “antecrysts”, but it is clear that the WFO solidified before the MDC was emplaced, and these older “igneous” grains are inherited. The bimodal age range of inherited igneous grains, dominated by ~?125 Ma and 350–320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by ~?124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (<?750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.  相似文献   

7.
1 Introduction According to recent researches, the North China Craton consists of three parts: the eastern block, western block and central zone (Zhao, 2001; Wilde et al., 2002). Paleoarchean continental blocks and zircon residuals have only been found in a few regions, such as Anshan, East Liaoning (Liu et al., 1992; Song et al., 1996; Wan et al., 2002, 2005), Caozhuang, East Hebei (Liu et al., 1992) and Xinyang, West Henan (Zheng et al., 2004), which are mainly distributed in the east…  相似文献   

8.
周丽云  王瑜  王娜 《地质通报》2015,34(203):400-418
分布于中国东北完达山地区的饶河花岗岩岩体中暗色矿物和斑晶钾长石定向排列,呈北北东走向,其中透镜状闪长质捕掳体近水平排列,局部具有左行剪切的特点。岩体中发育石香肠状石英脉,表明岩体在侵位过程中受到左行剪切作用的影响或制约。对出露的花岗岩进行LA-ICP-MS锆石U-Pb定年,获得年龄121±1Ma和119±1Ma,表明该岩浆流动形成于早白垩世。同时对围岩辉长岩、侵入岩体中的正长岩脉和辉绿岩脉进行锆石U-Pb年龄分析,分别获得160±1Ma、109±2Ma、124±1Ma的年龄结果。根据各样品中继承锆石的特征,围岩辉长岩的年龄数据很集中,不存在古老锆石的年龄信息。岩浆流动岩体及岩脉中都有太古宙、元古宙等各时代的锆石年龄数据,可能表明完达山地区在约120Ma之前已完成古太平洋板块的俯冲拼贴,饶河岩体形成于走滑环境下的陆内变形,为同构造侵入岩。  相似文献   

9.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

10.
Pitinga Province is one of the main tin provinces of the Amazonian craton. The oldest unit in the studied area is the Iricoumé Group, which consists of rhyolites and rhyodacites with a 207Pb/206Pb zircon age of 1888 ± 3 Ma. This volcanic sequence is intruded by five A-type granite plutons. The studied portion of the Europa pluton is homogeneous, and composed of a peralkaline alkali-amphibole hypersolvus granite that yielded a 207Pb/206Pb zircon age of 1829 ± 1 Ma. The early facies of the Madeira pluton consists of a metaluminous amphibole-biotite syenogranite (rapakivi facies) with a 207Pb/206Pb zircon age of 1824 ± 2 Ma. It is intruded by a 1822 ± 1 Ma, mildly peraluminous biotite syenogranite. The later facies of this pluton consist of a porphyritic, hypersolvus, alkali-feldspar granite and an albite granite. Field relationships and an extensive drilling survey indicate that these two facies are sheet-shaped and were emplaced almost simultaneously. The hypersolvus alkali-feldspar granite has a 207Pb/206Pb zircon age of 1818 ± 2 Ma. Taking in account its field relationships with the albite granite, a similar age is assumed for the latter.

The albite granite intrudes the biotite granite and rapakivi granite facies of the Madeira pluton, which was emplaced by shallow-level cauldron subsidence. The albite granite is sheet shaped and consists of a magmatic peralkaline cryolite-bearing core facies partially surrounded by an autometa-somatic peraluminous fluorile-bearing border facies. Both albite granite facies are strongly tin-mineralized and display anomalous contents of Nb, Rb, Zr, and REE. A massive body of cryolite and pegmatitic rocks is associated with the albite granite.

The contrast in age between the Iricoume Group and the Europa + Madeira granites demonstrates that the plutons are not subvolcanic intrusions related to the extrusives. The ages of 1824 ± 2 Ma, 1822 ± 2 Ma, and 1818 ± 2 Ma obtained, respectively, for the amphibole + biotite syenogranite, biotite granite, and porphyritic hypersolvus granite of the Madeira pluton are consistent with the emplacement sequence inferred for these facies. These ages indicate that the Madeira pluton was emplaced in a relatively short time. Its facies are a little younger than the peralkaline granite of the Europa pluton, suggesting that the latter is not coeval with the Madeira peralkaline albite granite.  相似文献   

11.
Ion probe U‐Th‐Pb dating of zircons from the Late Archaean granites of the Norseman region of the southeastern Yilgarn shows the existence of two distinct magmatic episodes. Large regional tonalite and granodiorite plutons were emplaced between 2685 and 2690 Ma, whereas large regional granite, and small tonalite and leucogranite plutons that intrude the greenstones have ages of 2660–2665 Ma. A small body of granite that intrudes the western edge of the greenstones has an inferred emplacement of 2672 ± 7Ma, and contains inherited zircon that is ~2800 Ma. The monzogranite core from a second pluton in a similar structural position also contains ~2800 Ma zircon; this age is similar to published Sm‐Nd and Rb‐Sr whole rock ages for banded gneisses associated with other members of this suite of domal plutons and is interpreted as representing the age of a significant component within the source region for these distinctive rocks.

Available geochemical and isotopic data are interpreted as indicating derivation of both the older granodiorite and younger granite suites through anatexis of pre‐existing crust of broadly andesitic composition, whereas both the domal granites and the small, late tonalite plutons could have been derived by anatexis of heterogeneous material similar to that represented by the banded gneisses.

If regional metamorphism was related to the emplacement of large volumes of felsic magma within the upper crust, as suggested by Binns et al. (1976), then the Norseman area has probably undergone two periods of regional metamorphism of comparable intensity at approximately 2660 and 2685 Ma.  相似文献   

12.
《地学前缘(英文版)》2019,10(3):1073-1099
Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U–Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies (mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton, involve lower T and/or higher P conditions at the magmatic source according to experimental studies. These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 ± 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 ± 1.5 Ma to 188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages (around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for non-inherited ages and gave very close mean ages (within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure, geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U–Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units, together with the evidences depicted by the geochemistry and field relations.  相似文献   

13.
The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high‐P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta‐gabbroic xenoliths up to 2 km wide that are enclosed within meta‐leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite–anorthite–kyanite or corundum ± rutile assemblage, and as diffusion‐zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al‐enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite–staurolite–chlorite–plagioclase–epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high‐grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U‐Th‐Pb isotopes and trace elements by depth‐profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high‐P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages.  相似文献   

14.
Sm–Nd garnet‐whole rock geochronology, phase equilibria, and thermobarometry results from Garnet Ledge, south‐eastern Alaska, provide the first precisely constrained P–T–t path for garnet zone contact metamorphism. Garnet cores from two crystals and associated whole rocks yield a four point isochron age for initial garnet growth of 89.9 ± 3.6 Ma. Garnet rims and matrix minerals from the same samples yield a five point isochron age for final garnet growth of 89 ± 1 Ma. Six size fractions of zircon from the adjacent pluton yield a concordant U–Pb age of 91.6 ± 0.5 Ma. The garnet core and rim, and zircon ages are compatible with single‐stage garnet growth during and/or after pluton emplacement. All garnet core–whole rock and garnet rim‐matrix data from the two samples constrain garnet growth duration to ≤5.5 my. A garnet mid‐point and the associated matrix from one of the two garnet crystals yield an age of 90.0 ± 1.0 Ma. This mid‐point result is logically younger than the 90.7 ± 5.6 Ma core–whole rock age and older than the 88.4 ± 2.5 Ma rim‐matrix age for this sample. A MnNaCaKFMASH phase diagram (P–T pseudosection) and the garnet core composition are used to predict that cores of garnet crystals grew at 610 ± 20 °C and 5 ± 1 kbar. This exceeds the temperature of the garnet‐in reaction by c. 50 °C and is compatible with overstepping of the garnet growth reaction during contact metamorphism. Intersection of three reactions involving garnet‐biotite‐sillimanite‐plagioclase‐quartz calculated by THERMOCALC in average P–T mode, and exchange thermobarometry were used to estimate peak metamorphic conditions of 678 ± 58 °C at 6.1 ± 0.9 kbar and 685 ± 50 °C at 6.3 ± 1 kbar, respectively. Integration of pressure, temperature, and age estimates yields a pressure‐temperature‐time path compatible with near isobaric garnet growth over an interval of c. 70 °C and c. 2.3 my.  相似文献   

15.
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic.  相似文献   

16.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

17.
Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and >9–10 kbar) and subsequent decompression in a kilometre‐scale, E‐W striking zone of noncoaxial, high‐grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U‐Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma). The youngest metamorphic zircon overgrowths from two metabasites (probably meta‐volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic. Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.  相似文献   

18.
The Songshugou ultramafic massif is located to the north of the Shang‐Dan fault, the Palaeozoic suture between the North and South China blocks. It is the largest Apline‐type ultramafic body in the Qinling orogenic belt of central China, consisting mainly of dunite with a small amount of harzburgite and minor pyroxenite. We present new LA‐ICP‐MS U?Pb dating and trace element results for zircon from two garnet amphibolite samples in the contact metamorphic zone surrounding the massif. One was sampled ~1 m from the massif, the other ~5 m away. The studied zircon grains are small, anhedral, and display typical metamorphic characteristics of low Th/U values (<0.1). The U and Th concentrations of zircon range from several hundred ppm to less than 10 ppm. Cathodoluminescence images show two apparent generations of zircon, with lighter cores and darker rims. Core and rim ages however, are identical within error. These two samples yield identical concordant ages of 506±7 and 510±7 Ma, suggesting that the Songshugou ultramafic massif was emplaced at ~510 Ma. Low HREE concentrations and the absence of Eu anomalies in most analysed zircons suggest that the studied grains most likely formed during garnet amphibolite metamorphism induced by emplacement of the ultramafic massif.

To better understand the cooling history of the massif, 40Ar/39Ar ages of amphibole from three garnet amphibolite specimens in the contact metamorphic zone and one amphobolite sample about 20 m away from the massif were determined. The 40Ar/39Ar ages increase from 372±15 Ma (JSM‐01) near the massif to disturbed, unreliable ‘plateau’ ages of 474±8 Ma (JSM‐03) and 781±146 Ma (JSM‐04) with increasing distance from the ultramafic massif, showing limited heating during exhumation of the massif, followed by slow cooling. Therefore, the Songshugou ultramafic massif does not reflect the Jining orogeny at ~1 Ga. Instead, it was emplaced into the Proterozoic, Qinling Group during the Palaeozoic, probably due to the subduction along the Shang‐Dan fault.  相似文献   

19.
U–Pb and Pb–Pb zircon ages for metamorphic zircons from granulites in the Saxonian granulite complex are reported, using the SHRIMP ion microprobe, conventional multigrain and single-gain techniques and the evaporation method. This is complemented by a Pb–Pb evaporation age for a post-granulite granite emplaced into the schist mantle around the granulites during uplift of the complex. We also demonstrate that zircon ages are not reset during high-grade metamorphism, as commonly argued, but have a very high closure temperature and usually preserve the isotopic composition reflecting the time of their formation. Multifaceted zircons from four granulite samples that probably grew close to the peak of high-grade metamorphism yielded identical U–Pb and Pb–Pb ages of ~340?Ma which support previously published data and unambiguously show that the granulites formed during a lower Carboniferous event and not in the early Palaeozoic or Precambrian as previously suggested. Older cores in some of the metamorphic zircons reveal early Palaeozoic components at 470–485?Ma that we interpret as ages reflecting magmatic crystallization of the granulite precursors. One sample suggests an inherited component as old as ~1700?Ma. The post-granulite granite has a Pb–Pb evaporation age of 333.1±1.0?Ma, and the short time interval between granulite metamorphism and granite intrusion implies that uplift, crustal extension and cooling of the granulite complex occurred rapidly after peak metamorphic conditions.  相似文献   

20.
锡林郭勒杂岩是华北板块北缘古生代褶皱带内出露面积最大的变质岩系,以前多被当着前寒武纪的古老地块.本文通过对该杂岩中副片麻岩和正片麻岩的锆石SHRIMP U-Pb年代学研究发现,副片麻岩中的锆石多为岩浆锆石,其206Pb/238U加权平均年龄为406±7Ma,指示它们的原岩主要是由近同期(略早些)的岩浆岩风化后就近沉积的产物,该年龄应代表源区(岛弧型?)花岗岩的形成时间,同时也是副片麻岩原岩沉积的下限年龄.正片麻岩中岩浆锆石的206Pb/238U加权平均年龄为382±2Ma,代表花岗片麻岩原岩的侵位年龄.岩石中锆石的变质增生边的形成年龄为337±6Ma,代表锡林郭勒杂岩发生变质和变形的时间,该变质事件可能与贺根山缝合带内所发生的一次主要的碰撞造山作用有关.这些年龄资料充分说明,锡林郭勒杂岩并非古老地块,而是华力西早期岩浆作用、沉积作用和变质作用事件的产物.整个事件是在较短的时间范围内(~70Ma)完成的,推测该杂岩发育在碰撞造山带的弧前环境.中亚-蒙古造山带东南部(内蒙古的中、东部)碰撞前的构造格局可能不是典型的多岛洋体制,由于缺少古老的陆块,造山过程更多的表现为大洋的大陆化过程,即洋内俯冲形成岛弧,岛弧在被动大陆边缘拼贴聚合转化为新的大陆.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号