首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a Raman lidar for measuring tropospheric water vapor profiles over Hefei(31.9°N,117.17°E),China.Intercomparisons of water vapor mixing ratio obtained by this Raman lidar and GZZ-59 type radiosonde observations show the good agreements when relative humidity is higher than 20%.Typical vertical profiles and seasonal variations of water vapor mixing ratio distribution are reported.Many observation eases indicate that the high moisture layer corresponds to large aerosol scattering ratios in the lower troposphere.  相似文献   

2.
黄土高原气溶胶垂直结构的微脉冲激光雷达观测   总被引:6,自引:0,他引:6       下载免费PDF全文
Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free troposphere are made using surface Micro-Pulse Lidar (MPL) measurements. The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E), which is near the major dust source regions of the Taklimakan and Gobi deserts. The vertical distribution of the MPL backscattering suggested that non-dust aerosols floated from ground level to an altitude of approximately 9 km around the source regions. Early morning hours are characterized by a shallow aerosol layer of a few hundred meters thick. As the day progresses, strong convective eddies transport the aerosols vertically to more than 1500 m. Citation: Huang, J. P., Z. W. Huang, J. R. Bi, et al., 2008: Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau, Atmos. Oceanic Sci. Lett., 1, 8-11  相似文献   

3.
The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL)combined with the meteorological data in the lower troposphere at Meteorological ResearchInstitute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnalstable air layer with larger Richardson number,and light wind velocities are favorable for aerosolconcentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients showlarger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity(RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones byradiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed,intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time(LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulenttransport from the surfaee probably dominates these temporal and spatial changes of aerosoldistribution.  相似文献   

4.
The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL) combined with the meteorological data in the lower troposphere at Meteorological Research Institute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnal stable air layer with larger Richardson number,and light wind velocities are favorable for aerosol concentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients show larger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity(RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones by radiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed,intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time(LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulent transport from the surfaee probably dominates these temporal and spatial changes of aerosol distribution.  相似文献   

5.
Raman激光雷达探测对流层中上部大气温度分布   总被引:9,自引:0,他引:9       下载免费PDF全文
介绍了一台氮分子(N2)Raman激光雷达系统.利用N2分子Raman散射和气溶胶及分子的Mie-Rayleigh散射信号,通过同时订正分子、气溶胶和臭氧的衰减,反演出对流层中上部大气密度和温度的垂直分布,其结果与常规球载无线电探空仪探测资料对比,在8~18 km范围内表现了较好的一致性.其中,二者测量的温度在9~15 km高度内相对差别小于4 K.  相似文献   

6.
Summary Water vapour flux profiles in the atmospheric boundary layer have been derived from measurements of water vapour density fluctuations by a ground-based Differential Absorption Lidar (DIAL) and of vertical wind fluctuations by a ground-based Doppler lidar. The data were collected during the field experiment LITFASS-2003 in May/June 2003 in the area of Lindenberg, Germany. The eddy-correlation method was applied, and error estimates of ±50 W/m2 for latent heat flux were found. Since the sampling error dominates the overall measurement accuracy, time intervals between 60 and 120 min were required for a reliable flux calculation, depending on wind speed. Rather large errors may occur with low wind speed because the diurnal cycle restricts the useful interval length. In the lower height range, these measurements are compared with DIAL/radar-RASS fluxes. The agreement is good when comparing covariance and error values. The lidar flux profiles are well complemented by tower measurements at 50 and 90 m above ground and by area-averaged near surface fluxes from a network of micrometeorological stations. Water vapour flux profiles in the convective boundary layer exhibit different structures mainly depending on the magnitude of the entrainment flux. In situations with dry air above the boundary layer a positive entrainment flux is observed which can even exceed the surface flux. Flux profiles which linearly increase from the surface to the top of the boundary layer are observed as well as profiles which decrease in the lower part and increase in the upper part of the boundary layer. In situations with humid air above the boundary layer the entrainment flux is about zero in the upper part of the boundary layer and the profiles in most cases show a linear decrease.  相似文献   

7.
Measurements from July 4 to July 8, 2005 by a high resolution visible radiometer, a Raman lidar, a ground particulate matter sampler, and ground meteorological sensors have been combined in synergy to infer the intrusion over south-east Italy, of air masses from north-west Sahara, the Atlantic Ocean, and the continental Europe. It is shown that backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles represent the best tools to detect the intrusion of long range transported air masses and to monitor their effects on the vertical distribution of aerosol optical and microphysical properties. High resolution radiometers are instead important tools to monitor changes on columnar aerosol properties and size distributions.Backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles have revealed that aerosol optical and microphysical properties significantly changed with time and space during African dust outbreaks: the intrusion of dust particles that at first occurred above 2 km of altitude extending up to 6 km, affected the all aerosol load down to ground within few hours. Aerosol size distributions showed during dust events a clear bimodality with an accumulation mode maximum at 0.24 µm and a coarse mode maximum at 0.94 μm. Conversely, we have found that during the advection of air masses from the Atlantic and continental Europe, aerosol particles were mainly located below 2 km, their optical and microphysical properties were affected by smaller changes in time and space, and were characterized by depolarization ratios rather close to those due to a pure molecular atmosphere. In this case bimodal size distributions with an accumulation mode showing two sub-modes at 0.16 μm and 0.24 μm, respectively and a coarse mode centred at 0.94 μm have also been observed.  相似文献   

8.
提出一套高光谱分辨率激光雷达(HSRL)系统,用于同时测量大气风和气溶胶的光学性质.该HSRL系统中使用碘分子滤波器分离分子和气溶胶后向散射,同时利用双边缘检测技术测量大气风场引起的多普勒频移.文中选用合理的HSRL参数和大气模型数据,模拟和分析了HSRL的测量性能.系统夜晚运行时,可测量20 km以下的大气风速和气溶胶,风速误差小于2 m s-1,气溶胶的后向散射系数相对误差小于30%.在白天工作时,相同误差下的可探测高度为10 km.模拟分析结果表明,该HSRL雷达有较大的应用前景,对天气和气象研究等有重要意义.  相似文献   

9.
Abstract

Arctic haze has been attributed to industrial pollution released at mid‐latitudes. Our current understanding has been pieced together from routine meteorological data, ground‐based air chemistry observations and limited aircraft measurements. This study investigates the relationship between synoptic boundary‐layer meteorology and the composition of the near‐surface atmosphere during the polar sunrise at Alert, N.W.T. A secondary objective is to characterize the influence of local activity on the atmospheric composition at a site for a new baseline monitoring station and at a location where aerosol chemistry and grab‐flask samples for CO2 have been made for many years. Detailed measurements of the vertical distribution of aerosols were obtained from an upward‐looking lidar to complement the ground‐based measurements. Meteorological profiles of the near‐surface boundary layer were obtained from both free‐flying and tethered balloons. Near‐surface measurements were made of aerosol physical and chemical properties, O3, NO2, NO/NOx, Peroxyacetylnitrate (PAN) and hydrocarbons.

The study period was characterized by prolonged periods with strong surface inversions, which were broken up occasionally by intrusions of cold air into the warmer air aloft. Lidar observations showed that ice crystals often accompanied aerosols and were responsible for reducing visibility below 30–40 km. There was a strong correlation between aerosol mass in the diameter size range 0.15 to 1.5 μm and total SO4 = . PAN found at concentrations of about 200 ppt(v) was the main carrier of atmospheric nitrogen. Aerosol trace elements were divisible into anthropogenic soil, mixed soil/anthropogenic sea salt and halogens. Vertical transport in the surface boundary layer, as regulated by the strength of the surface radiation inversion, may play an important role in influencing the chemical composition of the air at the ground. The location of the new baseline monitoring laboratory was found to be generally windier and warmer than the lower altitude weather station, and the influence of local activity was found to be minimal.  相似文献   

10.
本文针对传统的体散射模型并未考虑大气不均匀性对信号传输的影响等问题,通过引入垂直非均匀的大气参数改进了模型,并利用其建立了体目标的双基地激光测风雷达方程,仿真了侧向散射回波信号,并与单基地雷达进行了对比分析。研究表明:水平方向上,双基地激光测风雷达的回波信号分布特征与单基地雷达差异较大,其回波信号等值线在近地面为卵形线,随着探测高度的增加,回波信号等值线逐渐变为以主、被动雷达为焦点的椭圆形,并最终趋近于圆形;垂直方向上,双基地激光测风雷达的回波信号随高度衰减剧烈,近地面的回波能量约为10-10 J,4 km高度的回波能量约为10-15J,在中低层大气(0~10 km),回波信号中气溶胶散射占比大,在高层大气(10 km以上),分子散射占比大。  相似文献   

11.
The evolution of the planetary boundary layer and the influence of local circulation phenomena over Naples (southern Italy, 40.838° N, 14.183° E, 118 m above sea level) have been studied by systematic lidar measurements of aerosol optical properties and vertical distributions carried out from May 2000 to August 2003, in the course of the EARLINET project. In particular, our data show the development of aerosol layers typically located in the range between 1,000 and 2,300 m, with variable thickness. The optical properties of the observed layers have been determined. In order to analyse the evolution of the planetary boundary layer, detailed observations of complete diurnal cycles have also been performed. The analysis of lidar measurements of vertical profiles of wind speed and wind direction and air mass back-trajectories allowed us to characterize the sea-breeze circulation influence on both the planetary boundary-layer evolution and the observed aerosol vertical distribution.  相似文献   

12.
用2007年1月至2010年11月美国国家航空航天局(NASA)的CALIPSO星载激光雷达资料,通过532 nm总后向散射系数、体积退偏比和色比,分析了上海地区霾期间低层0~2 km高度气溶胶微物理属性与地面相对湿度的关系。结果表明,当地面相对湿度为65%~80%时,后向散射系数在0~0.001 km-1·sr-1范围内出现的频率最大;当地面相对湿度为50%~65%时,后向散射系数大于0.001 km-1·sr-1的频率最大;低层大气中聚集的主要是规则气溶胶粒子,当地面相对湿度为65%~80%时,气溶胶粒子最为规则,其次为80%~95%的地面相对湿度。当地面相对湿度为50%~65%时,不规则气溶胶粒子所占比重较大;霾期间,低层大气中细粒子气溶胶均占主导地位,但随着地面相对湿度的增大,气溶胶粒子粒径逐渐增大。在地面相对湿度为80%~95%时,大颗粒气溶胶相对较多。  相似文献   

13.
A state-of-the art Rayleigh and Mie backscattering lidar was set up at Gadanki (13.5N, 79.2E) in the Tropics in India. Using this system, regular observations of upper tropospheric clouds, aerosols at stratospheric heights and atmospheric temperatures in the range from 30 to 80 km were made. In this paper, the data collected during the period of 1998–99 were selected for systematic investigation and presentation. The Mie scattering lidar system is capable of measuring the degree of depolarization in the laser backscattering. Several tropical cirrus cloud structures have been identified with low to moderate ice content. Occasionally, thin sub-visible cirrus clouds in the vicinity of the tropical tropopause have also been detected. The aerosol measurements in the upper troposphere and lower stratosphere show low aerosol content with a vertical distribution up to 35 km altitude. Rayleigh-scattering lidar observations reveal that at the tropical site, temperature inversion occurs at mesospheric heights. Atmospheric waves have induced perturbations in the temperatures for several times at the upper stratospheric heights. A significant warming in the lower mesosphere associated with a consistent cooling in the upper stratospheric heights is observed particularly in the winter season during the events of sudden stratospheric warming (SSW).  相似文献   

14.
一次降雪过程持续原因分析   总被引:4,自引:2,他引:2  
利用多种观测资料和中尺度数值模拟资料,对2011年2月14日发生在江淮地区的一次预报失误的持续性降雪过程进行较为全面的分析.结果表明:前期的降水导致近地面维持较大湿度,补充南下的冷平流促使低层大气接近饱和,降雪持续期间,水汽集中在对流层低层浅薄的层次中;对流层中层发展和维持的强冷平流导致降水区上空迅速降温减湿,从而在对流层中低层,逐渐建立起弱对流不稳定层结.而叠置其上的稳定层则将对流活动和水汽的向上输送限制在对流层低层内,使得水汽和能量得以在一定范围内集中;不断补充南下的冷空气强迫近地层风场发生扰动,形成的中尺度切变线,为这种浅薄层次下的弱对流活动提供了触发条件.尽管辐合抬升较弱,但与其它季节相比,气温较低的冬季,在抬升凝结高度较低的大气中,水汽易凝结成云致降水.造成这次预报失误的原因,是忽略了近地层系统的变化.另外,对补充冷空气的影响作用考虑不充分.  相似文献   

15.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   

16.
利用2018年1月至2019年12月河北省中南部地区的微波辐射计和探空数据,将两种探测设备取得的资料在时间和空间上进行点对点匹配,共筛选出187条晴空廓线、1176条云天廓线和12条毛毛雨天廓线,定量分析了各个高度层的晴天、云天和毛毛雨天气条件下两种大气探测设备的温度、相对湿度和水汽密度廓线的相关性及误差情况。结果表明:3种天气条件下的微波辐射计与无线电探空仪温度和水汽密度的相关性整体较好,地基微波辐射计观测的大气参数分布存在不同程度的差异,但是微波辐射计和探空的变化趋势一致性较好,并且无线电探空仪观测的大气参数和微波辐射计反演的温度、相对湿度和水汽密度相关性整体上均呈现低层大气优于高层大气,温度相关性最好,水汽密度次之,相对湿度最低。通过对比各个高度层的拟合程度,发现3.5 km以下的低层大气参数精度更可靠,对于需要间接计算的大气物理量,如K指数、有效位能、积分水汽含量等,使用低层数据计算的大气物理量精度会更好。本文开展的地基微波辐射计反演的大气物理参数与探空仪观测对比研究工作,对提高微波辐射计在大气物理和人工影响天气的探测精度方面具有参考意义。  相似文献   

17.
Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.  相似文献   

18.
The vertical wind profiles determined by Doppler sodar and the water vapourmixing ratio profiles obtained by Raman lidar are used to estimate the atmosphericwater vapour flux profiles in the nocturnal urban boundary layer under unstableconditions. The experiment was conducted for several nights in the central areaof Rome under a variety of moisture conditions and different urban boundary-layerflow regimes. Despite some scatter in the profiles, the latent heat flux is found tobe positive throughout the depth of the nocturnal urban boundary-layer. Thelayer-averaged flux shows a variation between -4 to +40 W m-2, whileindividual values of flux in excess of +150 W m-2 pertain to a case offree convection during cold air advection caused by the sea breeze. The qualityof flux estimates is found to be highly limited by the low sampling rates employedin the experiment resulting in errors to the order of 60%. Therefore, the results mustbe viewed as estimates rather than precise measurements. The skewness profiles ofthe turbulent fluctuations of vertical velocity and water vapour mixing ratio are alsopositive.  相似文献   

19.
2017年12月22日至2018年1月18日利用无人机携带温、湿和颗粒物浓度探测仪对南京地区灰霾污染条件下大气边界层垂直结构开展加密观测。通过比较不同灰霾污染条件下温度、湿度和PM2.5(直径小于2.5微米的颗粒物)浓度的垂直结构差异,结合地面热通量、2米空气温度、相对湿度、风速、风向及主要大气污染物(如臭氧和PM2.5)浓度,定量评估了气溶胶辐射效应对边界层和夹卷过程的影响。分析表明,灰霾或气溶胶削弱到达地表太阳辐射,减小地表感热通量,延迟边界层发展,增加近地层大气稳定度,降低边界层高度,并加重灰霾污染。灰霾污染物在混合层顶处累积,导致PM2.5浓度最大变化出现在边界层顶部而不是近地层。气溶胶辐射效应对夹卷特征及其特征参数有重要影响。灰霾浓度升高时,夹卷区厚度增加;无量纲化夹卷速度随对流理查逊数的变化不再符合负1次方幂函数关系,与大涡模拟结果一致。本研究进一步指出,为提高重霾污染条件下天气和空气质量数值预报水平,必须考虑气溶胶辐射效应对边界层和夹卷参数化的影响。  相似文献   

20.
北京秋季一次降雪前污染天气的激光雷达观测研究   总被引:1,自引:0,他引:1  
以2009年11月5~8日北京地区发生的一次特殊天气形势下的重污染天气过程为例,研究分析本次污染特点和大气边界层结构特征以及此天气过程的大气温度和相对湿度结构特点。激光雷达是探测大气边界层及气溶胶的一个高效工具,利用ALS300激光雷达系统测量信号,应用Fernald方法反演大气消光系数,根据反演的气溶胶消光系数的最大突变,即最大递减率的高度来确定大气边界层的高度。利用其观测的退偏比分析大气污染物特性。利用微波辐射计数据,确定大气温度和湿度时空特征。研究结果表明:在本次污染天气下,大气具有很强的逆温结构,逆温最大可达近1 K(100 m)-1,500 m以上的大气相对湿度很低,在这种天气特征下的大气边界层高度在400 m左右,非常稳定。污染结束降雪开始前,大气逆温结构消失,大气湿度大幅度增加,接近饱和。根据lidar(light detection and ranging)退偏比的分析,本次污染天气是一次典型的烟尘类颗粒物的污染,污染具有区域性特点。PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物)与AOT(Aerosol Optical Thickness)之间有明显的线性关系,相关系数达到0.72。该lidar系统能够反演出秋季降雪前本次污染天气背景下北京城区上空的大气污染特性和大气边界层高度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号